Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Чертежи деталей и сборочный чертеж. Как сделать чертеж: пошаговая инструкция, советы и хитрости по изготовлению качественного чертежа Как сделать чертеж изделия

У многих пользователей может возникнуть необходимость чертить онлайн. Это может какой-либо эскиз, схема, план или техническая иллюстрация, которые необходимо создать на ПК с помощью соответствующего инструментария. При этом на компьютере может не оказаться необходимых для этого программ, что побудит пользователя искать в сети онлайн ресурсы, способных помочь в создании нужного пользователю проекта. В данном материале я расскажу, как сделать чертёж онлайн, и какие сервисы нам в этом помогут.

Перейдём к непосредственному описанию сетевых сервисов онлайн. Замечу, что указанные сервисы для создания чертежей обладают довольно сжатым по сравнению с профессиональными программами функционалом, чего, впрочем, может быть достаточно для решения множества базовых задач.

Онлайн-редактор GLIFFY

Данный визуальный редактор GLIFFY обладает довольно широким инструментарием для создания чертежей и схематических изображений, включая множество шаблонов и схем для архитектурных проектов, блок-схем, сетевых диаграмм и других соответствующих целей.

Для работы с данным редактором перейдите на сайт cameralabs.org , при необходимости авторизуйтесь (доступна также авторизация через социальную сеть). После этого вам станет доступен экран редактирования, где вы сможете создать ваш чертёж.


Рабочий экран редактора «GLIFFY»

Слева расположены вкладки различных шаблонов (вы можете раскрыть вкладку, кликнув на ней), сверху – панель инструментов, а справа будет размещаться непосредственное поле для создания чертежа.

Для сохранения вашей работы нужно будет нажать вверху на «File» — «Сохранить» (или «Экспорт»).

Сервис draw.io

Англоязычный сервис draw.io поможет создать чертёж в режиме онлайн, начертав различные графики, схемы и диаграммы.

Для работы с данным сервисом перейдите на сайт draw.io. Ресурс спросит, куда сохранять созданные вами работы (выберите «Device» для сохранения на жёсткий диск).

Нажмите на «Create New Diagram» (создание новой диаграммы), выберите её имя, а также соответствующий шаблон для создания слева.


Нажмите на «Create New Diagram» для создания нового чертежа

Выберите пустую начальную диаграмму (Blanc Diagramm) или какой-либо из уже имеющихся шаблонов диаграмм (charts), инженерных схем (Engineering), блок-схем (Flowcharts), разметки (layout), карт (maps) и других видов шаблонов

После того, как вы выбрали шаблон, нажмите на «Create» (Создать).


Левая и центральная часть экрана редактирования сервиса «draw.io»

Для сохранения созданного чертежа нажмите на «File» — «Save as».

Сервис drawisland.com

Сервис drawisland.com – простой англоязычный сервис для черчения в Интернете. После перехода на него вас ждёт экран для создания чертежа с довольно ограниченным набором инструментов. Слева расположена панель инструментов, сверху вы можете выбрать размеры рисунка и повернуть его на 90 или 180 градусов, а справа доступ выбор диаметр инструмента для рисования, а также переключаться между слоями.


Рабочее окно «drawisland.com»

Для сохранения созданного вами рисунка на диск нажмите на кнопку «Save» слева.

Сервис knin.com.ua

Данный сервис предназначен для создания технического плана строительного объекта, который можно будет позже сохранить к себе на ПК. Как и большинство аналогичных сервисов, данный сервис обладает набором встроенных графических шаблонов, делающих процесс создания технического плана помещения практичным и удобным, позволяя легко нарисовать чертёж онлайн.

  1. Для начала работы с данным сервисом перейдите на сайт knin.com.ua .
  2. Укажите справа сверху размеры помещения, а затем нажмите на кнопку «Создать».
  3. Если будет необходимо добавить ещё помещение, тогда вновь укажите его размеры и нажмите на «Создать».
  4. После того, как все нужные помещения будут созданы, нажмите на «Продолжить».
  5. После этого вам справа станут доступны различные графические объекты – окна, стены, предметы интерьера и так далее, которые вы сможете помещать на ваш объект.
  6. Далее, как план объекта будет создан, вы сможете сохранить его на диск, нажав на кнопку «Сохранить» внизу.

Рабочее окно сервиса «knin.com.ua»

Сервис sketch.io

«Sketch.io» — ещё один простой англоязычный ресурс для построения простых чертежей, создания графических набросков и зарисовок. Функционал сервиса довольно прост, и подойдёт, в первую очередь новичкам в деле создания чертежей.

  1. Для работы с сервисом перейдите на сайт sketch.io .
  2. Справа размещена панель инструментов, с помощью которой можно выполнять все необходимые операции.
  3. После того, как рисунок будет создан, нажмите на кнопку «Export» (дискетка сверху), затем на «Save» — «Download».

Программы для черчения

Также при описании онлайн сервисов для создания эскиза проекта, нельзя обойти стороной и ряд популярных программ, созданных специально для таких целей. При этом большинство из них обладает платным характером, так как для решения профессиональных задач функционала бесплатных программ может быть недостаточно.

  • «Autodesk AutoCAD » — одна из наиболее известных систем автоматизированного проектирования (САПР), предназначенных для создания различных видов чертежей, схем, графиков. Позволяет создавать 2Д и 3Д чертежи на высокопрофессиональном уровне, обладает богатым функционалом, отлично справляется с рендерингом 3Д-объектов, умеет работать с 3Д-принтером. Поддерживается работа с чертежами в формате DVG, DWF, DXF;
  • «Аскон Компас » — это целый комплекс программных решений для осуществления черчения и диаграмм, довольно популярных на территории РФ. Данные решения поддерживают множество форматов электронных чертежей, обладают большой базой присоединяемых библиотек, при этом довольно просты и удобны в работе;
  • «nanoCAD » — бесплатная программа для начинающих, включающая необходимый набор базовых инструментов для осуществления проектирования и создания чертежей. Программа направления на создание преимущественно 2Д-чертежей, поддерживает работу с DWG и DXF чертежами, достоинством программы является быстрый вывод объектов, работы с DirectX и так далее.

Заключение

В данном материале мной были рассмотрены несколько популярных сервисов, позволяющих реализовать черчение онлайн. Все они обладают довольно разным функционалом, в целом уступая своим профессиональным стационарным конкурентам (к примеру, «Autodesk AutoCAD»). Если же вы только пробуете свои силы в черчении, то рекомендую воспользоваться как перечисленными мной онлайн-сервисами, так и упомянутой бесплатной программой «nanoCAD» — описанные инструменты прекрасно подойдут для получения базовых навыков при создании нужных вам чертежей.

Цель этой статьи - проиллюстрировать применение известных в области автоматизации проектирования средств восстановления моделей объектов по фотографиям в стендовом моделизме

Что такое восстановление чертежей или 3D модели объекта по фотографиям?

Известно, что по фотографии можно вычислить некоторые геометрические характеристики реальности, которая запечатлена на фотоснимке. Более конкретно, если мы имеем снимок, снятый объективом с определенным фокусным расстоянием, и на этом снимке известна точка пересечения оси объектива с плоскостью снимка (центр снимка), то можно весьма точно вычислить угловые расстояния между центром снимка и любой точкой на снимке или на объекте (изделии), снятом на этом снимке. А если есть несколько фотографий, на которых некоторое изделие (самолет , танк, корабль, здание или их части) сняты с нескольких разных точек, то по определенным алгоритмам можно вычислить взаимное положение в трехмерном пространстве различных точек изделия. Применив затем к вычисленным координатам точек в пространстве простые геометрические преобразования вращения и масштабирования и соединив вычисленные точки соответствующим и линиями и плоскостями, можно в итоге получить 3D (трехмерную) модель изделия, а спроектировав ее на нужные плоскости, получить проекции - чертежи изделия.

Наука и технология восстановления 3D моделей и чертежей изделий по фотографиям называется фотограмметрией . Имеются многочисленные программы, автоматизирующие эту работу, такие, как REALVIZ / AutoDesk ImageModeler ,
PhotoModeler и другие

Зачем восстанавливать чертежи или 3D модель изделия по фотографиям?

Бывают случаи, когда есть только фотографии. Например, некий архитектурный памятник был снят в свое время фотографом с разных точек, а затем был по каким-то причинам утрачен и не осталось никаких его чертежей и эскизов. В этом случае фотографии - единственный источник знаний об изделии, и получить чертежи или 3D модель можно только по ним.

Другой случай из области архитектуры - необходимость получения чертежей или 3D модели существующего здания, если для него отсутствуют чертежи и другие материалы, позволяющие обойтись без фотограмметрии, а формы и сложность здания делают реальный обмер всех частей здания если не невозможным, то чрезвычайно трудоемким. В этом слачае получение чертежей или 3D модели по фотографиям может оказаться самым простым решением. Отличие этого случая от предыдущего состоит в том, что фотографии можно сделать специально для целей фотограмметрии - а значит, более подходящие и лучшего качества.

Бывают случаи - таких много - когда доступные чертежи изделия (самолета, танка или корабля) построены приблизительно, "примерно" по фотографиям и рисункам и не включают более или менее достоверные цифровые и другие данные "от производителя", позволяющие более или менее обоснованно судить о размерах, пропорциях и обводах объекта. Таких случаев множество; публикуемые в популярных изданиях "чертежи" разных изделий часто настолько различаются между собой и отличаются от самого изделия, что использовать их для построения стендовой модели-копии изделия не представляется возможным или приходится гадать, какие из найденных чертежей более достоверны. В этих случаях имеющиеся фотографии изделия могут служить для получения данных, позволяющих судить о точности тех или иных доступных чертежей изделия, а если таких фотографий много и они хорошего качества, они могут служить и для построения 3D модели и чертежей изделия.

Пример восстановления 3D модели и чертежей изделия по фотографиям посредством REALVIZ ImageModeler

Пример восстановления 3D модели и чертежей по фотографиям я приведу на примере несложного изделия - козырька фонаря кабины самолета Як-9Т. Причина моего обращения к фотограмметрии в этом случае вполне общая: я имею в руках несколько чертежей данного самолета, проекции козырька на них различаются существенно, и ни один нельзя обоснованно выбрать как наиболее "похожий". Козырек на этих чертежах просто более или менее похоже нарисован, строить претендующую на приемлемую точность стендовую модель по ним нельзя.

С другой стороны, имеется неплохой фотоматериал, который можно попробовать использовать для фотограмметрии. Это прежде всего несколько кадров козырька крупным планом из известного фильма "Эксплуатация_самолетов_Як 1, 7, 9. Инструкция_летчику " 1943 года, а также несколько более или менее четких фотографий из других источников в ракурсах, не представленных в кадрах фильма.

Выбираем подходящие снимки и приводим их к примерно одному и тому же размеру. Поскольку изделие у нас строго симметричное, некоторые снимки "зеркалим" и добавляем зеркальные копии к набору - таким образом, в нашем наборе оказываются снимки, снятые как бы с двух симметричных точек, хотя на самом деле у нас их нет.

Используем старую, но работоспособную версию REALVIZ ImageModeler. Она хороша тем, что представляет собой отдельную программу (свежие версии ImageModeler уже являются частью AutoCAD и требуют его установки).

Загружаем все выбранные снимки в ImageModeler. Каждый снимок ассоциируется с отдельной камерой, имеющей свое собственное, неизвестное нам фокусное расстояние и центр кадра - мы выбираем такой способ загрузки, так как мы не знаем, как на самом деле сделаны выбранные нами снимки и как они кадрированы. Иначе говоря, мы просто сообщаем ImageModeler, что мы ничего не знаем о том, как были сняты фотографии - тем самым предоставляя ему право самому все это определить (а он это умеет).

Далее на всех загруженных снимках расставляем поименованные метки - так называемые калибрационные маркеры. Каждый поименованный маркер соответствует определенной точке изделия - чаще всего это какой-нибудь угол, четко определяемый на тех снимках, на которых он виден, либо пересечение прямых линий (такие пересечения мы заранее нарисовали на снимках). На каждом снимке стараемся поставить все маркеры, места которых видны или достоверно угадываются на нем. По мере расстановки маркеров ImageModeler производит необходимые пересчеты, пытается откалибровать камеры и уведомляет нас о том, что его расчеты-пересчеты закончились успешно ("Cameras have been successfully calibrated.") либо нет. В случае неудачи (которая означает, что по текущему расположению маркеров ImageModeler не может понять, откуда и как делались снимки) уточняем положения маркеров до тех пор, пока не добиваемся сообщения об успехе калибровки.

Положение всех маркеров уточняем последовательно до тех пор, пока списки снимков и маркеров в левой части окна ImageModeler не "позеленеют". Зеленый цвет иконок снимков и маркеров означает, что маркеры на снимках расставлены "хорошо" - в результате расчетов ImageModeler определил, что разброс их рассчитанных положений в пространстве по всем снимкам не превышает 3 пикселов (при размере снимков примерно 1200 х 800 пикселов). При желании можно ужесточить это ограничение - указать предельное отклонение в 2 или даже 1 пиксел и продолжить уточнение положения тех маркеров, которые окрашены желтым или красным, стараясь "зазеленить" как можно больше маркеров. Работа эта довольно нудная, требует некоторого опыта для правильного выбора маркера, которым следует заняться в первую очередь. Заканчивается она в тот момент когда либо все маркеры зеленые, либо ничего уже улучшить не удается.

В результате этой работы ImageModeler имеет набор ("облако") точек в трехмерном пространстве, каждая из которых соответствует одному из маркеров. Выгружаем это "облако"в файл подходящего формата (например, DWG) и импортируем в программу 3D моделирования. Видим на первый взгляд бесформенное "облако" точек, которое после некоторого верчения, рассмотрения и сопоставления с фотографиями и маркерами на них удается "разобрать" и понять, какая точка какому маркеру соответствует. Далее это "облако" ориентируем так, чтобы "козырек" занял нужное положение в 3D пространстве (плоскость симметрии совпадает с плоскостью YZ, а задняя плоскость козырька - с плоскостью XZ)

И, наконец, самое существенное после ориентации - масштабирование. ImageModeler не знает, разумеется, каковы в реальности расстояния между маркерами, и устанавливает их в нужных относительных величинах исходя и некоторой произвольной базовой метрики. Для масштабирования берем известные из других источников размеры - высоту козырька от нижних срезов боковин до верхушки и ширину козырька между нижними срезами боковин:

И получаем более или менее правдоподобную 3D модель козырька; ее проекции на плоскости представляют собой три проекции чертежа. Импортируем полученную 3D модель козырька в модель самолета,в которой уже готовы капот и верхняя часть фюзеляжа; совместив верхушку козырька с ее расчетным положением, убеждаемся, что козырек хорошо "встал" на свое место: нижние углы переплета (обозначенные красными кружками ) практически точно "легли" на повернхость фюзеляжа:

Что получилось?

Рассматривая 3D модель козырька вместе с фюзеляжем и другими частями фонаря, убеждаемся в "похожести" - на имеющиеся фотографии наш козырек весьма и весьма похож. Этот же вывод следует из сравнения проекции сбоку с фотографиями:

Можно видеть, что в то время как наш козырек вполне похож на фотографии Як-9Т, он существенно отличается от козырька известного Як-9 И.И.Клещева, выставленного ныне в музее Задорожного (нижняя часть последнего снимка). В качестве объяснения может быть выдвинуто предположение о том, что на этом самолете козырек нештатный и заимствован, к примеру, с Як-1Б; на "нештатность" указывает также тот факт, что переднее бронестекло в этом козырьке явно установлено неправильно.

В заключение привожу окончательные чертежи "моего" козырька, "снятые" с 3D модели:

Выводы

Восстановление, причем визуально весьма точное, 3D модели и чертежей изделия вполне удалось, причем в данном случае всего лишь по нескольким старым и весьма плохим снимкам. В пользу точности говорит тот факт, что ImageModeler удалось хорошо откалибровать камеры по снимкам с нашими маркерами - это считается основанием для утверждения о том, что ему удалось достаточно точно определить положение маркеров в пространстве, а значит, пространственную модель изделия. Разумеется, если бы фотографии были получше и их было бы побольше, а тем более если удалось бы ввести вместе со снимками условия их съемки (фокусные расстояния и другие параметры), точность была бы больше; и почти абсолютной точности можно было бы достичь, если перед съемкой откалибровать фотокамеру встроенными в ImageModeler средствами калибровки и затем снимать изделие этой же камерой с точно известными фокусными расстояниями для каждого снимка (нужные данные фотокамеры умеют записывать в заголовки снимков). Однако для целей стендового моделирования полученные 3D модель и чертежи могут считаться более чем достаточными, а их точность заметно лучше, чем в чертежах из публичных источников.

В этом уроке мы научимся превращать фотографию в чертеж в синих цвета при помощи Adobe Photoshop.Если вы не любитель тратить долгие часы на создание подобных работ в оригинале это техника поможет «подделать» их, создав видимость рабочего чертежа. Мы используем фильтры, чтобы создать базовые линии с исходной фотографии, а затем добавим сетку и текстуры, чтобы сделать работу реалистичнее.

Результат

Откройте фотографию в Adobe Photoshop. Конкретно эта фотография находится в бесплатном доступе, и вы можете скачать ее .

В меню выберите Image > Adjustments > Desaturate/Изображение>Коррекция>Обесцветить, чтобы сделать фотографию черно-белой.

В меню выберите Filter > Stylize > Find Edges/Фильтр>Стилизация>Выделение краев, чтобы создать базовые линии чертежа.

Чертеж, который хотим эмитировать мы должен быть нарисован белым цветом на синей бумаге, поэтому в меню выберите Image > Adjustments > Invert/Изображение>Коррекция>Инвертировать, чтобы инвертировать цвета.

На фотографии чаще всего будут ненужные объекты, которые на чертеже нам ни к чему. Инструментом Pen/Перо обрисуйте дом (или ваш объект), включив только те части, которые хотите оставить. Затем кликните по контуру правой кнопкой и выберите Make Selection/Создать выделение.

Не снимая выделения кликните по иконке Layer Mask/Маска слоя в нижней части палитры Layers/Слои. Так вы скроете все лишние детали, оставив только то, что находится внутри выделения.

Создайте новый слой и перетащите его под слой с домом. Залейте этот новый слой темно-синим цветом #051340. Смените blending mode/режим наложения слоя с домом на Screen/Осветление. Так черный цвет этого слоя станет прозрачным.

Кликните дважды по слою с домой, чтобы открыть стили слоя и выберите Stroke/Обводка. Укажите толщину обводки в 5px, положение — Inside/Внутри, режим наложения Screen/Осветление и 100% opacity/непрозрачности.

Теперь мы хотим добавить сетку. Для этого создадим паттерн. Создайте новый документ размером примерно 80x80px. Размер зависит от размера вашего документа.

Создайте новый слой и отключите видимость фонового слоя. Инструментом marquee/прямоугольная область выделите тонкие длинные прямоугольники толщиной в 2px по верхнему и левому краям документа и залейте их белым цветом.

Нажмите CMD/Ctrl+D, чтобы снять выделение, затем в меню выберите Edit > Define Pattern/Редактировать>Определить узор. Назовите узор так, чтобы вы потом могли его легко опознать.

Закройте документ и вернитесь к нашему основному документу. Создайте новый слой и возьмите инструмент Fill/Заливка. В выпадающем меню в панели настроек выберите вариант заливки Pattern/Узор, затем выберите только что созданный нами паттерн. Кликните в любом месте документа, чтобы выполнить заливку.

Инструментом marquee/прямоугольная область создайте выделение вокруг основной композиции по контуру клеточек. Кликните правой кнопкой и выберите Stroke/Обводка, затем укажите широту в 5px, белый цвет и положение Center/Центр.

Тем же инструментом выделите области снаружи от только что созданной нами рамки и нажмите delete, чтобы очистить их.

Укажите слою с сеткой маску. Удерживая ALT, кликните по маске, чтобы редактировать ее содержание. Скачайте и откройте одну из пыльных и поцарапанных текстур , затем вставьте ее в маску. Масштабируйте и поверните ее как необходимо.

Возьмите инструмент Selection/Выделение и кликните в документе, чтобы выйти из режима редактирования маски. Выберите маску слоя и нажмите CMD/Ctrl+L, чтобы открыть коррекцию Levels/Уровни. Переместите слайдеры как показано на картинке выше.

Завершаем нашу работу эффектом старой бумаги. Скачайте одну из них , вставьте в документ, масштабируйте до нужного размера, затем обесцветьте и инвертируйте цвета.

Смените режим наложения слоя с бумагой на Screen/Осветление.

Результат

Перевод — Дежурка

В последние года за создание индивидуального дизайна жилища, интерьера все чаще люди берутся буквально своими руками. И если начинают они с аксессуаров и предметов декора, постепенный переход на изготовление более сложных вещей не заставляет себя ждать. Это могут быть предметы мебели для кухни, гостиной, прихожей, в детскую комнату.

Для этого нужно понять общий принцип процесса создания предметов интерьера. Основа основ – хороший эскиз. Если навыки рисования не идеальные, лучше посмотреть эскизы мебели в Интернете или специализированных журналах. Не обязательно повторять точь-в-точь, можно преобразить тот или иной предмет под свои запросы.

Рассмотреть проведение замеров можно на примере создания кухонного гарнитура своими руками.

У проведения замеров есть свои законы, ведь чертежи основываются именно на верно вымеренных параметрах:

  • Если вы делаете кухонный гарнитур, или какую-то вещь для кухни, нужно знать длину стен.
  • Затем измеряется высота стен помещения.
  • Если за основу берутся стандартные размеры кухонных шкафов, они будут следующие: высота напольного шкафа – 85 см, глубина – около 50 см, ширина от 30 до 80 см.
  • Навесные шкафы делаются либо по тем же параметрам, либо в уменьшенном варианте.
  • Расстояние от навесного шкафа до напольного – 65 см.

Все цифры – лишь стандартный, усредненный размер, который можно менять под особенности кухни и рост хозяйки. Следующей момент – внесение размеров бытовой техники, которой заполняется кухня.

Теперь эти размеры нужно переносить на бумагу. Сегодня это можно не делать вручную, чертежи зачастую составляются в специальных графических программах.

Библиотека чертежей мебели (видео)

Правильный расчет размеров

Каждый предмет кухонного гарнитура рассчитывается отдельно. Все элементы детализируются, расписываются по составным частям. К примеру, тумба для кухни расписывается следующим образом :

  • Задняя панель – размер;
  • Боковые стенки – размер;
  • Дверцы – размер;
  • Полочки – размер.

Выдвижные ящики детализируются отдельно. Обозначаются места крепления фурнитуры. Все размеры указываются со строгой точностью, чтобы чертежи были без ошибок.

Мягкая мебель своими руками чертежи

Для создания мягкой мебели нудно не только создать чертеж своими руками, но и правильно выбрать материалы. А в перечень нужных материалов включаются:

  • Доски,
  • Бруски,
  • Наполнитель,
  • Обивочную ткань,
  • Листы ДВП и ДСП,
  • Бруски,
  • Шпагат,
  • Острый нож,
  • Дрель,
  • Шуруповерт,
  • Степлер,
  • Швейную машину,
  • Нитки,
  • Саморезы,
  • Отвертки,
  • Плоскогубцы,
  • Клей,
  • Стусло,
  • Ключи в наборе,
  • Ручную пилу.

Имея даже малые навыки создания простых конструкции и использования этих инструментов, можно разобраться и в более сложной технологии. Успешность предприятия будет зависеть именно от того, сколь качественными материалами вы пользуетесь.

Мягкая мебель требует наполнителя, синтепон подойдет для этой цели идеально. Хорошая альтернатива ему конский волос, но стоимость последнего серьезно превышает затраты на синтепон. Поролон также подойдет, единственное замечание – выбирайте поролоновые листы средней упругости.

Работа начинается с создания каркаса. Когда создаются отдельные элементы, и потребуются чертежи. На материал наносится разметка деталей, после чего выпиливаются заготовки.

Первая примерка покажет, совпадает ли конструкция и чертежи – детали должны состыковаться друг с другом. Если совпадения нет, корректировать детали нужно сразу же.

Кухонный уголок своими руками (видео)

Преимущества мебели, изготовленной своими руками

Для кухни ли, или для другой комнаты мастерятся предметы интерьеры, у таких конструкций есть несомненные преимущества :

  • Высокое качество – так как вы сами выбираете материал, фурнитуру, контролируете все этапы процесса создания;
  • Существенная экономия средств – закупка материалов, вот и все расходы;
  • Создание единого интерьерного ансамбля – созданной своими руками мебелью проще сделать интерьер гармоничным;
  • Приобретение опыта и моральное удовлетворение от проведенной работы.

К тому же нестандартные размеры помещения, углы и выступы требуют соответствующей мебели.

Специальные программы проектирования

Эти программы значительно упрощают процесс конструирования. Они помогают произвести правильный расчет размеров и не только. С помощью программ можно:

  • Создать эскиз определенной вещи;
  • Создать дизайн-проект , к примеру, гарнитура для кухни;
  • Сузить выбор материалов до определенной категории;
  • Подобрать варианты декора , отделки, фурнитуры;
  • Построить 3 D модель будущей конструкции;
  • Оптимально разместить детали на листе – точная раскройка листового материала;
  • Управлять процессом резки материала.

Словом, можно компьютеризировать весь процесс, тем самым гарантированно избежать ошибок, и все, что сложно делать своими руками, выполнить на компьютере.

Создание проекта кухни при помощи KitchenDraw на компьютере (видео)

Заключение

Создание любых предметов интерьера – непростое дело, но вполне посильное и непрофессионалу. Точность замеров, чертежей, вооружение современными компьютерными программами проектирования упростят этот процесс и позволят создать действительно качественную, оригинальную вещь, которая долго прослужит хозяевам.

Изделием называют любой предмет или набор предметов производства, подлежащих изготовлению на предприятии.

ГОСТ 2.101-88* устанавливает следующие виды изделия:

  • Детали;
  • Сборочные единицы;
  • Комплексы;
  • Комплекты.

При изучении курса «Инженерной графики» к рассмотрению предлагаются два вида изделий: детали и сборочные единицы.

Деталь – изделие, изготавливаемое из однородного по наименованию и марке материала, без применения сборочных операций.

Например: втулка, литой корпус, резиновая манжета (неармированная), отрезок кабеля или провода заданной длинны. К деталям относятся так же изделия, подвергнутые покрытиям (защитным или декоративным), или изготовленные с применением местной сварки, пайки, склейки сшивки. К примеру: корпус, покрытый эмалью; стальной винт, подвергнутый хромированию; коробка, склеенная из одного листа картона, и т.п.

Сборочная единица – изделие, состоящее из двух и более составных частей, соединённых между собой на предприятии-изготовителе сборочными операциями (свинчиванием, сваркой, пайкой, клёпкой, развальцовкой, склеиванием и т.д.).

Например: станок, редуктор, сварной корпус и т.д.

Комплексы — два и более специфицируемых изделия не соединенных на предприятии-изготовителе сборочными операциями, но предназначенных для выполнения взаимосвязанных эксплуатационных функций, например, автоматическая телефонная станция, зенитный комплекс и т.п.

Комплекты — два и более специфицированных изделия, не соединенных на предприятии-изготовителе сборочными операциями и представляющих набор изделий, имеющих общее эксплуатационное назначение вспомогательного характера, например, комплект запасных частей, комплект инструментов и принадлежностей, комплект измерительной аппаратуры и т.п.

Производство любого изделия начинается с разработки конструкторской документации. На основании технического задания проектная организация разрабатывает эскизный проект , содержащий необходимые чертежи будущего изделия, расчётно-пояснительную записку, проводит анализ новизны изделия с учётом технических возможностей предприятия и экономической целесообразности его осуществления.

Эскизный проект служит основанием для разработки рабочей конструкторской документации. Полный комплект конструкторской документации определяет состав изделия, его устройство, взаимодействие составных частей, конструкцию и материал всех входящих в него деталей и другие данные, необходимые для сборки, изготовления и контроля изделия в целом.

Сборочный чертёж – документ, содержащий изображение сборочной единицы и данные, необходимые для её сборки и контроля.

Чертёж общего вида – документ, определяющий конструкцию изделия, взаимодействие его составных частей и принцип работы изделия.

Спецификация – документ, определяющий состав сборочной единицы.

Чертёж общего вида имеет номер сборочной единицы и код СБ.

Например: код сборочной единицы (Рисунок 9.1) ТМ.0004ХХ.100 СБ тот же номер, но без кода, имеет спецификация (Рисунок 9.2) этой сборочной единицы. Каждое изделие, входящее в сборочную единицу, имеет свой номер позиции, указанный на чертеже общего вида. По номеру позиции на чертеже можно найти в спецификации наименование, обозначение данной детали, а также количество. Кроме того, в примечании может быть указан материал, из которого деталь изготовлена.

9.2. Последовательность выполнения чертежей деталей

Чертёж детали – это документ, содержащий изображение детали и другие данные, необходимые для её изготовления и контроля.

Перед выполнением чертежа необходимо выяснить назначение детали, конструктивные особенности, найти сопрягаемые поверхности. На учебном чертеже детали достаточно показать изображение, размеры и марку материала.

  1. Выбрать главное изображение (см. ).
  2. Установить количество изображений – видов, разрезов, сечений, выносных элементов, которые однозначно дают представление о форме и размерах детали, и дополняющих какой-либо информацией главное изображение, помня о том, что количество изображений на чертеже должно быть минимальным и достаточным.
  3. Выбрать масштаб изображений по ГОСТ 2.302-68. Для изображений на рабочих чертежах предпочтительным является масштаб 1:1. Масштаб на чертеже детали не всегда должен совпадать с масштабом сборочного чертежа. Крупные и не сложные детали можно вычерчивать в масштабе уменьшения (1:2; 1:2,5; 1:4; 1:5 и т.д.), мелкие элементы лучше изображать в масштабе увеличения (2:1; 2,5:1; 4:1; 5:1; 10:1; и т.д.).
  4. Выбрать формат чертежа. Формат выбирается в зависимости от размера детали, числа и масштаба изображений. Изображения и надписи должны занимать примерно 2/3 рабочего поля формата. Рабочее поле формата ограничено рамкой в строгом соответствии с ГОСТ 2.301-68* по оформлению чертежей. Основная надпись располагается в правом нижнем углу (на формате А4 основная надпись располагается только вдоль короткой стороны листа);
  5. Выполнить компоновку чертежа. Для рационального заполнения поля формата рекомендуется тонкими линиями наметить габаритные прямоугольники выбранных изображений, затем провести оси симметрии. Расстояния между изображениями и рамкой формата должно быть примерно одинаковым. Оно выбирается с учётом последующего нанесения выносных, размерных линий и соответствующих надписей.
  6. Вычертить деталь. Нанести выносные и размерные линии в соответствии с ГОСТ 2.307-68. Выполнив тонкими линиями чертёж детали, удалить лишние линии. Выбрав толщину основной линии, обвести изображения, соблюдая соотношения линий по ГОСТ 3.303-68. Обводка должна быть чёткой. После обводки выполнить необходимые надписи и проставить числовые значения размеров над размерными линиями (предпочтительно размером шрифта 5 по ГОСТ 2.304-68).
  7. Заполнить основную надпись. При этом указать: наименование детали (сборочной единицы), материал детали, её код и номер, кем и когда был выполнен чертёж и т.д. (Рисунок 9.1)

Ребра жесткости, спицы при продольных разрезах показывают не заштрихованными.

Рисунок 9.1 – Рабочий чертеж детали «Корпус»

9.3. Нанесение размеров

Простановка размеров является наиболее ответственной частью работы над чертежом, так как неправильно проставленные и лишние размеры приводят к браку, а недостаток размеров вызывает задержки производства. Ниже предложены некоторые рекомендации по нанесению размеров при выполнении чертежей деталей.

Размеры детали замеряют с помощью измерителя на чертеже общего вида сборочной единицы с учётом масштаба чертежа (с точностью 0,5мм). При замере наибольшего диаметра резьбы необходимо округлить его до ближайшего стандартного, взятого по справочнику. Например, если диаметр метрической резьбы по замеру d=5,5мм, то необходимо принять резьбу М6 (ГОСТ 8878-75).

9.3.1. Классификация размеров

Все размеры разделяются на две группы: основные (сопряжённые) и свободные.

Основные размеры входят в размерные цепи и определяют относительное положение детали в узле, они должны обеспечивать:

  • расположение детали в узле;
  • точность взаимодействия собранных деталей;
  • сборку и разборку изделия;
  • взаимозаменяемость деталей.

Примером могут служить размеры охватывающих и охватываемых элементов сопряжённых деталей (Рисунок 9.2). Общие соприкасающиеся поверхности двух деталей имеют одинаковый номинальный размер.

Свободные размеры в размерные цепи детали не входят. Эти размеры определяют такие поверхности детали, которые не соединяются с поверхностями других деталей, и поэтому их выполняют с меньшей точностью (Рисунок 9.2).

А – охватывающая поверхность; Б – охватываемая поверхность;

В — свободная поверхность; d – номинальный размер

Рисунок 9.2

9.3.2. Методы простановки размеров

Применяются следующие методы простановки размеров:

  • цепной;
  • координатный;
  • комбинированный.

При цепном методе (Рисунок 9.3) размеры проставляются последовательно один за другим. При такой простановке размеров каждая ступень валика обрабатывается самостоятельно, и технологическая база имеет своё положение. При этом на точность выполнения размера каждого элемента детали не влияют ошибки выполнения предыдущих размеров. Однако, ошибка суммарного размера состоит из суммы ошибок всех размеров. Нанесение размеров в виде замкнутой цепи не допускается, за исключением случаев, когда один из размеров цепи указан как справочный. Справочные размеры на чертеже отмечаются знаком * и записываются на поле: «* Размеры для справок » (Рисунок 9.4).

Рисунок 9.3

Рисунок 9.4

При координатном методе размеры проставляются от выбранных баз (Рисунок 9.5). При этом методе нет суммирования размеров и ошибок в расположении любого элемента относительно одной базы, что является его преимуществом.

Рисунок 9.5

Комбинированный метод простановки размеров представляет собой сочетание цепного и координатного методов (Рисунок 9.6). Он применяется, когда необходима высокая точность при изготовлении отдельных элементов детали.

Рисунок 9.6

По своему назначению размеры подразделяются на габаритные, присоединительные, установочные и конструктивные.

Габаритные размеры определяют предельные внешние (или внутренние) очертания изделия. Они не всегда наносятся, но их часто указывают для справок, особенно для крупных литейных деталей. Габаритный размер не наносится на болтах и шпильках.

Присоединительные и установочные размеры определяют величины элементов, по которым данное изделие устанавливают на место монтажа или присоединяют к другому. К таким размерам относятся: высота центра подшипника от плоскости основания; расстояние между центрами отверстий; диаметр окружности центров (Рисунок 9.7).

Группа размеров, определяющих геометрию отдельных элементов детали предназначенных для выполнения какой-либо функции, и группа размеров на элементы детали, такие как фаски, проточки (наличие которых вызвано технологией обработки или сборки), выполняются с различной точностью, поэтому их размеры не включают в одну размерную цепь (Рисунок 9.8, а, б).

Рисунок 9.7

Рисунок 9.8, а

Рисунок 9.8, б

9.4. Выполнение чертежа детали, имеющей форму тела вращения

Детали, имеющие форму тела вращения, в подавляющем большинстве (50-55% из числа оригинальных деталей) встречаются в машиностроении, т.к. вращательное движение – самый распространённый вид движения элементов существующих механизмов. Кроме того, такие детали технологичны. К ним относятся валы, втулки, диски и т.п. обработка таких деталей производится на токарных станках, где ось вращения расположена горизонтально.

Поэтому детали, имеющие форму тела вращения, располагают на чертежах так, чтобы ось вращения была параллельна основной надпись чертежа (штампу). Торец детали, принятый за технологическую базу для обработки, желательно располагать справа, т.е. так, как он будет расположен при обработке на станке. На рабочем чертеже втулки (Рисунок 9.9) показано выполнение детали, являющейся поверхностью вращения. Наружные и внутренние поверхности детали ограничены поверхностями вращения и плоскостями. Другим примером может быть деталь «Вал» (Рисунок 9.10), ограниченная соосными поверхностями вращения. Осевая линия параллельна основной надписи. Размеры проставлены комбинированным способом.

Рисунок 9.9 — Рабочий чертеж детали поверхности вращения

Рисунок 9.10 — Рабочий чертеж детали «Вал»

9.5. Выполнение чертежа детали изготовленной из листа

К этому виду деталей относятся прокладки, крышки, планки, клинья, плиты и т.д. Детали такой форму обрабатываются различными способами (штамповка, фрезеровка, строгание, резка ножницами). Плоские детали, изготовленные из листового материала, изображают, как правило, в одной проекции, определяющей контур детали (Рисунок 9.11). Толщина материала указывается в основной надписи, но рекомендуется указывать её повторно на изображении детали, на чертеже — s3 . Если деталь гнутая, то часто на чертеже показывают развертку.

Рисунок 9.11 — Чертеж плоской детали

9.6. Выполнение чертежа детали, изготовленной литьем, с последующей механической обработкой

Формообразование литьем позволяет получить достаточно сложную форму детали, практически без потерь материала. Но после литья поверхность получается достаточно грубая, поэтому, рабочие поверхности требуют дополнительной механической обработки.

Таким образом получаем две группы поверхностей — литейные (черные) и обработанные после литья (чистые).

Процесс литья: в литейную форму заливается расплавленный материал, после остывания заготовка вынимается из формы, для чего, большинство поверхностей заготовки имеют литейные уклоны, а сопряжения поверхностей — литейные радиусы скруглений.

Литейные уклоны можно не изображать, а литейные радиусы должны быть изображены обязательно. Размеры литейных радиусов скруглений указывают в технических требованиях чертежа записью, например: Неуказанные литейные радиусы 1,5 мм.

Основная особенность нанесения размеров: так как есть две группы поверхностей, то есть и две группы размеров, одна связывает все черные поверхности, другая — все чистые, и по каждому координатному направлению допускается проставлять только один размер, связывающий между собой эти две группы размеров.

На рисунке 9.12 такими размерами являются: на главном изображении — размер высоты крышки — 70, на виде сверху — размер 10 (от нижнего торца детали) (выделены синим цветом).

При литье применяют литейный материал (буква Л в обозначении), обладающий повышенной текучестью, например:

  • стали по ГОСТ 977-88 (Сталь 15Л ГОСТ 977-88)
  • серые чугуны по ГОСТ 1412-85 (СЧ 15 ГОСТ 1412-85)
  • литейные латуни по ГОСТ 17711-93 (ЛЦ40Мц1,5 ГОСТ 17711-93)
  • алюминиевые сплавы по ГОСТ 2685-75 (АЛ2 ГОСТ 2685-75)

Рисунок 9.12 — Чертеж литейной детали

9.7. Выполнение чертежа пружины

Пружины применяются для создания определённых усилий в заданном направлении. По виду нагружения пружины подразделяются на пружины сжатия, растяжений, кручения и изгиба; по форме – на винтовые цилиндрические и конические, спиральные, листовые, тарельчатые и пр. правила выполнения чертежей различных пружин устанавливает ГОСТ 2.401-68. На чертежах пружины вычерчивают условно. Витки винтовой цилиндрической или конической пружины изображают прямыми линиями, касательными к участкам контура. Допускается в разрезе изображать только сечения витков. Пружины изображают с правой навивкой с указанием в технических требованиях истинного направления витков. Пример выполнения учебного чертежа пружины приведён на Рисунке 9.13.

Чтобы получить на пружине плоские опорные поверхности крайние витки пружины поджимают на ¾ витка или на целый виток и шлифуют. Поджатые витки не считаются рабочими, поэтому полное число витков n равно числу рабочих витков плюс 1,5÷2:n 1 =n+(1.5÷2) (Рисунок 9.14).

Построение начинают с проведения осевых линия, проходящих через центры сечений витков пружины (Рисунок 9.15, а). Затем на левой стороне осевой линии проводят окружность, диаметр которой равен диаметру проволоки, из которой изготовлена пружины. Окружность касается горизонтальной прямой, на которую опирается пружина. Затем необходимо провести полуокружность из центра, расположенного в пересечении правой оси с той же горизонтальной прямой. Для построения каждого последующего витка пружины слева на расстоянии шага строят сечения витков. Справа каждое сечение витка будет располагаться напротив середины расстояния между витками, построенными слева. Проводя касательные к окружностям, получают изображение пружины в разрезе, т.е. изображение витков, лежащих за плоскостью, проходящей через ось пружины. Для изображения передних половин витков так же проводят касательные к окружностям, но с подъёмом вправо (Рисунок 9.15, б). Переднюю четверть опорного витка строят так, чтобы касательная к полуокружности касалась одновременно и левой окружности в нижней части. Если диаметр проволоки 2мм и менее, то пружину изображают линиями толщиной 0,5÷1,4мм. При вычерчивании винтовых пружин с числом витков более четырёх показывают с каждого конца один-два витка, кроме опорных проводя осевые линии через центры сечений витков по всей длине. На рабочих чертежах винтовые пружины изображают так, чтобы ось имела горизонтальное положение.

Как правило, не рабочем чертеже помещают диаграмму испытаний, показывающую зависимость деформаций (растяжения, сжатия) от нагрузки (Р 1 ; Р 2 ; Р 3), где Н 1 – высота пружины при предварительной деформации Р 1 ; Н 2 – то же, при рабочей деформации Р 2 ; Н 3 – высота пружины при максимальной деформации Р 3 ; Н 0 – высота пружины в рабочем состоянии. Кроме того, под изображением пружины указывают:

  • Номер стандарта на пружину;
  • Направление навивки;
  • n – число рабочих витков;
  • Полное число витков n;
  • Длину развёрнутой пружины L=3,2×D 0 ×n 1 ;
  • Размеры для справок;
  • Другие технические требования.

Рисунок 9.13 – Рабочий чертеж пружины


а б

Рисунок 9.14. Изображения поджатых витков пружины

Рисунок 9.15. Последовательность построения изображения пружины

9.8. Выполнение чертежа зубчатого колеса

Зубчатое колесо — важнейшая составная часть многих конструкций приборов и механизмов, предназначенных для передачи или преобразования движения.

Основные элементы зубчатого колеса: ступица, диск, зубчатый венец (рисунок 9.16).

Рисунок 9.16 — Элементы зубчатого колеса

Профили зубьев нормализованы соответствующими стандартами.

Основными параметрами зубчатого колеса являются (рисунок 9.17):

m=P t / π [мм ] – модуль;

d a = m ст (Z +2) – диаметр окружности вершин зубьев;

d = m ст Z – делительный диаметр;

d f = m ст (Z – 2.5) – диаметр окружности впадин;

S t = 0.5 m ст π – ширина зуба;

h a – высота головки зуба;

h f – высота ножки зуба;

h = h a +h f – высота зуба;

P t – делительный окружной шаг.

Рисунок 9.17 — Параметры зубчатого колеса

Основная характеристика зубчатого венца — модуль — коэффициент, связывающий окружной шаг с числом π. Модуль стандартизован (ГОСТ 9563-80).

m = P t / π [мм]

Таблица 9.1 — Основные нормы взаимозаменяемости. Колеса зубчатые. Модули, мм
0,25 (0,7) (1,75) 3 (5,5) 10 (18) 32
0,3 0,8; (0,9) 2 (3,5) 6 (11) 20 (36)
0,4 1; (1,125) (2,25) 4 (7) 12 (22) 40
0,5 1,25 2,5 (4,5) 8 (14) 25 (45)
0,6 1,5 (2,75) 5 (9) 16 (28) 50

На учебных чертежах зубчатых колес:

Высота головки зуба – h a = m;

Высота ножки зуба – h f = 1,25m;

Шероховатость рабочих поверхностей зуба – Ra 0.8 [мкм];

Справа вверху листа выполняют таблицу параметров, размеры которой приведены на рисунке 9.18, часто заполняют только значение модуля, число зубьев и делительный диаметр.

Рисунок 9.18 — Таблица параметров

Зубья колеса изображают условно, согласно ГОСТ 2.402-68 (Рисунок 9.19). Штрихпунктирная линия — делительная окружность колеса.

В разрезе зуб показывают нерассеченным.


а б в

Рисунок 9.19 — Изображение зубчатого колеса а — в разрезе, б — на виде спереди и в — на виде слева

Шероховатость на боковую рабочую поверхность зуба на чертеже проставляют на делительной окружности.

Пример выполнения чертежа зубчатого колеса приведен на рисунке 9.20.

Рисунок 9.20 — Пример выполнения учебного чертежа зубчатого колеса

9.9. Последовательность чтения чертежа общего вида

  1. По данным, содержащимся в основной надписи, и описанию работы изделия выяснить наименование, назначение и принцип работы сборочной единицы.
  2. По спецификации определить, из каких сборочных единиц, оригинальных и стандартных изделий состоит предложенное изделие. Найти на чертеже то количество деталей, которое указано в спецификации.
  3. По чертежу представить геометрическую форму, взаимное расположение деталей, способы их соединения и возможность относительного перемещения, то есть, как работает изделие. Для этого необходимо рассмотреть на чертеже общего вида сборочной единицы все изображения данной детали: дополнительные виды, разрезы, сечения, и выносные элементы.
  4. Определить последовательность сборки и разборки изделия.

При чтении чертежа общего вида необходимо учитывать некоторые упрощения и условные изображения на чертежах, допускаемые ГОСТ 2.109-73 и ГОСТ 2.305-68*:

На чертеже общего вида допускается не показывать:

  • фаски, скругления, проточки, углубления, выступы и другие мелкие элементы (Рисунок 9.21);
  • зазоры между стержнем и отверстием (Рисунок 9.21);
  • крышки, щиты, кожухи, перегородки и т.д. при этом над изображением делают соответствующую надпись, например: «Крышка поз.3 не показана»;
  • надписи на табличках, шкалах и т.д. изображают только контуры этих деталей;
  • на разрезе сборочной единицы разные металлические детали имеют противоположные направления штриховки, либо разную плотность штриховки (Рисунок 9.21). Необходимо помнить, что для одной и той же детали плотность и направление всех штриховок одинаковы на всех проекциях;
  • на разрезах показывают не рассечёнными:
    • составные части изделия, на которые оформлены самостоятельные сборочные чертежи;
    • такие детали как оси, валы, пальцы, болты, винты, шпильки, заклёпки, рукоятки, а также шарики, шпонки, шайбы, гайки (Рисунок 9.21);
  • сварное, паяное, клееное изделие из однородного материала в сборе с другими изделиями на разрезе имеет штриховку в одну сторону, при этом границы между деталями изделия показаны сплошными линиями;
  • допускается равномерно расположенные одинаковые элементы (болты, винты, отверстия) показывать не все, достаточно одного;
  • если ни одно отверстие, соединение не попадает в секущую плоскость, то допускается его «доворачивать», чтобы оно попало в изображение разреза.

На сборочных чертежах проставляют справочные, установочные, исполнительные размеры. Исполнительные это размеры на те элементы, которые появляются в процессе сборки (например, штифтовые отверстия).

Рисунок 9.21 – Сборочный чертеж

Рисунок 9.22 – Спецификация

9.10. Правила заполнения спецификации

В спецификацию для учебных сборочных чертежей, как правило, входят следующие разделы:

  1. Документация;
  2. Комплексы;
  3. Сборочные единицы;
  4. Детали;
  5. Стандартные изделия;
  6. Прочие изделия;
  7. Материалы;
  8. Комплекты.

Название каждого раздела указывается в графе «Наименование», подчеркивается тонкой линией и выделяется пустыми строчками.

  1. В раздел » Документация» вносят конструкторские документы на сборочную единицу. В этот раздел в учебных чертежах вписывают «Сборочный чертеж».
  2. В разделы «Сборочные единицы» и «Детали» вносят те составные части сборочной единицы, которые непосредственно входят в нее. В каждом из этих разделов составные части записывают по их наименованию.
  3. В раздел «Стандартные изделия» записывают изделия, применяемые по государственным, отраслевым или республиканским стандартам. В пределах каждой категории стандартов запись производят по однородным группам, в пределах каждой группы — в алфавитном порядке наименований изделий, в пределах каждого наименования — в порядке возрастания обозначений стандартов, а в пределах каждого обозначения стандартов — в порядке возрастания основных параметров или размеров изделия.
  4. В раздел «Материалы» вносят все материалы, непосредственно входящие в сборочную единицу. Материалы записывают по видам и в последовательности, указанным в ГОСТ 2.108 — 68. В пределах каждого вида материалы записывают в алфавитном порядке наименований материалов, а в пределе каждого наименования — по возрастанию размеров и других параметров.

В графе «Количество» указывают количество составных частей на одно специфицируемое изделие, а в разделе «Материалы» — общее количество материалов на одно специфицируемое изделие с указанием единиц измерения — (например, 0,2 кг). Единицы измерения допускается записывать в графе «Примечание».

Как создать спецификацию в программе КОМПАС-3D, рассказано в соответствующей данной теме !

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...