Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Флагманы сони иксперия. Sony показала новый флагман Xperia X Performance и несколько интересных смарт-аксессуаров

Марсоход «Кьюриосити» (с англ. «Любопытство») приземлился в рамках миссии NASA Mars Science Laboratory в 2012 году на Марс. Марсоход представляет собой автономную химическую лабораторию в несколько раз больше и тяжелее предыдущих марсоходов «Спирит» и «Оппортьюнити». Задача аппарата -за несколько месяцев пройти от 5 до 20 километров и провести полноценный анализ марсианских почв и компонентов атмосферы. Для выполнения контролируемой и более точной посадки использовались вспомогательные ракетные двигатели. За несколько лет своей работы марсоход предоставил много интересных данных и сделал множество живописных снимков Красной планеты.

Специалисты, изучающие феномен НЛО, подозревают американское аэрокосмическое агентство NASA в обмане века. На одном из снимков, недавно полученном с поверхности Красной планеты марсоходом « » в объектив камеры попал какой-то странный летающий объект. По форме он напоминает летящего орла. Неужели NASA действительно нас обманывает, или у кого-то просто очень сильное воображение?

  • ChemCam представляет собой набор инструментов для проведения дистанционного химического анализа различных образцов. Работа проходит следующим образом: лазер проводит серию выстрелов по исследуемому объекту. Затем проводится анализ спектра света, который излучила испарившаяся порода. ChemCam может изучать объекты, расположенные на расстоянии до 7 метров от него. Стоимость прибора составила около 10 миллионов долларов (перерасход 1.5 млн. долл.). В штатном режиме фокусировка лазера на объекте проходит автоматически.
  • MastCam: система состоящая из двух камер, и содержит множество спектральных фильтров. Возможно получение снимков в естественных цветах размером 1600 × 1200 пикселей. Видео с разрешением 720p (1280 × 720) снимается с частотой до 10 кадров в секунду и аппаратно сжимается. Первая камера — Medium Angle Camera (MAC), имеет фокусное расстояние в 34 мм и 15 градусное поле зрения, 1 пиксель равен 22 см при расстоянии 1 км.
  • Narrow Angle Camera (NAC), имеет фокусное расстояние в 100 мм, 5.1 градусное поле зрения, 1 пиксель равен 7,4 см при расстоянии 1 км. Каждая камера имеет по 8 Гб флеш-памяти, которая способна хранить более 5500 необработанных изображений; имеется поддержка JPEG-сжатия и сжатия без потери качества. В камерах есть функция автоматической фокусировки, которая позволяет им сфокусироваться на объектах, от 2,1 м до бесконечности. Несмотря на наличие у производителя конфигурации с трансфокатором, камеры не имеют зума, поскольку времени для тестирования не оставалось. Каждая камера имеет встроенный фильтр Байера RGB и по 8 переключаемых ИК-фильтров. По сравнению с панорамной камерой, которая стоит на Спирите и Оппортьюнити (MER) и получает чёрно-белые изображения размером 1024 × 1024 пикселя, камера MAC MastCam имеет угловое разрешение в 1,25 раза выше, а камера NAC MastCam — в 3,67 раза выше.
  • Mars Hand Lens Imager (MAHLI): Система состоит из камеры, закреплённой на роботизированной «руке» марсохода, используется для получения микроскопических изображений горных пород и грунта. MAHLI может снять изображение размером 1600 × 1200 пикселей и с разрешением до 14,5 мкм на пиксель. MAHLI имеет фокусное расстояние от 18,3 мм до 21,3 мм и поле зрения от 33,8 до 38,5 градусов. MAHLI имеет как белую, так и ультрафиолетовую светодиодную подсветку для работы в темноте или с использованием флуоресцентной подсветки. Ультрафиолетовая подсветка необходима для вызова излучения карбонатных и эвапоритных минералов, наличие которых позволяет говорить о том, что в формировании поверхности Марса принимала участие вода. MAHLI фокусируется на объектах от 1 мм. Система может сделать несколько изображений с акцентом на обработку снимка. MAHLI может сохранить необработанное фото без потери качества или же сделать сжатие JPEG файла.
  • MSL Mars Descent Imager (MARDI): Во время спуска на поверхность Марса, MARDI передавал цветное изображение размером 1600 × 1200 пикселей со временем экспозиции в 1,3 мс, камера начала съёмку с расстояния 3,7 км и закончила на расстояния 5 метров от поверхности Марса, снимала цветное изображение с частотой 5 кадров в секунду, съёмка продлилась около 2-ух минут. 1 пиксель равен 1,5 метра на расстоянии 2 км, и 1,5 мм на расстоянии 2 метра, угол обзора камеры — 90 градусов. MARDI содержит 8 Гб встроенной памяти, которая может хранить более 4000 фотографий. Снимки с камеры позволили увидеть окружающий рельеф на месте посадки. JunoCam, построенная для космического аппарата Juno, основана на технологии MARDI.
  • Alpha-particle X-ray spectrometer (APXS): Это устройство будет облучать альфа-частицами и сопоставлять спектры в рентгеновских лучах для определения элементного состава породы. APXS является формой Particle-Induced X-ray Emission (PIXE), который ранее использовался в Mars Pathfinder и Mars Exploration Rovers. APXS был разработан Канадским космическим агентством. MacDonald Dettwiler (MDA) — Аэрокосмическая канадская компания, которая строит Canadarm и RADARSAT, несут ответственность за проектирование и строительство APXS. Команда по разработке APXS включает в себя членов из Университета Гвельфов, Университета Нью-Брансуик, Университета Западного Онтарио, НАСА, Университет Калифорнии, Сан-Диего и Корнельского университета.
  • Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA): CHIMRA представляет собой ковш 4х7 сантиметров, который зачерпывает грунт. Во внутренних полостях CHIMRA он просеивается через сито с ячейкой 150 микрон, чему помогает работа вибромеханизма, лишнее удаляется, а на просеивание отправляется следующая порция. Всего проходит три этапа забора из ковша и просеивания грунта. В результате остается немного порошка необходимой фракции, который и отправляется в грунтоприемник, на теле ровера, а лишнее выбрасывается. В итоге из всего ковша на анализ поступает слой грунта в 1 мм. Подготовленный порошок изучают приборы CheMin и SAM.
  • CheMin: Chemin исследует химический и минералогический состав, с помощью рентгеновского флуоресцентного инструмента и рентгеновской дифракции. CheMin является одним из четырёх спектрометров. CheMin позволяет определить обилие полезных ископаемых на Марсе. Инструмент был разработан Дэвидом Блейком в Ames Research Center НАСА и Jet Propulsion Laboratory НАСА. Марсоход будет бурить горные породы, а полученный порошок будет собран инструментом. Затем рентгеновские лучи, будут направлены на порошок, внутренняя кристаллическая структура полезных ископаемых отразится на дифракционной картине лучей. Дифракция рентгеновских лучей различна для разных минералов, поэтому картина дифракции позволит учёным определить структуру вещества. Информацию о светимости атомов и дифракционную картину будет снимать специально подготовленная E2V CCD-224 матрица размером 600х600 пикселей. У Кьюриосити имеется 27 ячеек для анализа образцов, после изучения одного образца ячейка может быть переиспользована, но анализ проводимый над ней будет иметь меньшую точность из-за загрязнения предыдущим образцом. Таким образом у ровера есть всего 27 попыток для полноценного изучения образцов. Ещё 5 запаянных ячеек хранят образцы с Земли. Они нужны чтобы протестировать работоспособность прибора в марсианских условиях. Для работы прибора нужна температура −60 градусов Цельсия, иначе будут мешать помехи от прибора DAN.
  • Sample Analysis at Mars (SAM): Набор инструментов SAM будет анализировать твёрдые образцы, органические вещества и состав атмосферы. Инструмент был разработан: Goddard Space Flight Center, Лаборатория Inter-Universitaire, Французскими CNRS и Honeybee Robotics, наряду со многими другими партнёрами.
  • Radiation assessment detector (RAD), «Детектор оценки радиации»: Этот прибор собирает данные для оценки уровня радиационного фона, который будет воздействовать на участников будущих экспедиций к Марсу. Прибор установлен практически в самом «сердце» ровера, и тем самым имитирует астронавта, находящегося внутри космического корабля. RAD был включен первым из научнах инструментов для MSL, ещё на околоземной орбите, и фиксировал радиационный фон внутри аппарата — а затем и внутри ровера во время его работы на поверхности Марса. Он собирает данные об интенсивности облучения двух типов: высокоэнергетических галактических лучей и частиц, испускаемых Солнцем. RAD был разработан в Германии Юго-западным исследовательским институтом (SwRI) внеземной физики в группе Christian-Albrechts-Universität zu Kiel при финансовой поддержке управления Exploration Systems Mission в штаб-квартире НАСА и Германии.
  • Dynamic Albedo of Neutrons (DAN): «Динамическое альбедо нейтронов» (ДАН) используется для обнаружения водорода, водяного льда вблизи поверхности Марса, предоставлен Федеральным Космическим Агентством (Роскосмос). Является совместной разработкой НИИ автоматики им. Н. Л. Духова при «Росатоме» (импульсный нейтронный генератор), Института космических исследований РАН (блок детектирования) и Объединённого института ядерных исследований (калибровка). Стоимость разработки прибора составила около 100 млн рублей. Фото прибора. В состав прибора входят импульсный источник нейтронов и приемник нейтронного излучения. Генератор испускает в сторону марсианской поверхности короткие, мощные импульсы нейтронов. Продолжительность импульса составляет около 1 мкс, мощность потока — до 10 млн нейтронов с энергией 14 МэВ за один импульс. Частицы проникают в грунт Марса на глубину до 1 м, где взаимодействуют с ядрами основных породообразующих элементов, в результате чего, замедляются и частично поглощаются. Оставшаяся часть нейтронов отражается и регистрируется приемником. Точные измерения возможны до глубины 50 - 70 см. Помимо активного обследования поверхности Красной планеты, прибор способен вести мониторинг естественного радиационного фона поверхности (пассивное обследование).
  • Rover environmental monitoring station (REMS): Комплект метеорологических приборов и ультрафиолетовый датчик предоставило Испанское Министерство Образования и Науки. Исследовательская группа во главе с Хавьером Гомес-Эльвира, Центра Астробиологии (Мадрид) включает Финский Метеорологический институт в качестве партнёра. Установили её на мачту камеры для измерения атмосферного давления, влажности, направления ветра, воздушных и наземных температур, ультрафиолетового излучения. Все датчики расположены в трёх частях: две стрелы присоединены к марсоходу, Remote Sensing Mast (RSM), Ultraviolet Sensor (UVS) находится на верхней мачте марсохода, и Instrument Control Unit (ICU) внутри корпуса. REMS даст новые представления о местном гидрологическом состоянии, о разрушительном влиянии ультрафиолетового излучения, о подземной жизни.
  • MSL entry descent and landing instrumentation (MEDLI): Основной целью MEDLI является изучение атмосферной среды. После замедления спускаемого аппарата с марсоходом в плотных слоях атмосферы теплозащитный экран отделился — в этот период были собраны необходимые данные о марсианской атмосфере. Эти данные будут использованы в будущих миссиях, дав возможность определить параметры атмосферы. Также их возможно использовать для изменения конструкции спускаемого аппарата в будущих миссиях на Марс. MEDLI состоит из трёх основных приборов: MEDLI Integrated Sensor Plugs (MISP), Mars Entry Atmospheric Data System (MEADS) и Sensor Support Electronics (SSE).
  • Hazard avoidance cameras (Hazcams): Марсоход имеет две пары чёрно-белых навигационных камеры, расположенных по бокам аппарата. Они используются для избежания опасности во время передвижения марсохода и для безопасного наведения манипулятора на камни и почву. Камеры делают 3D изображения (поле зрения каждой камеры — 120 градусов), составляют карту местности впереди марсохода. Составленные карты позволяют марсоходу избежать случайных столкновений и используются программным обеспечением аппарата для выбора необходимого пути преодоления препятствий.
  • Navigation cameras (Navcams): Для навигации марсоход использует пару чёрно-белых камер, которые установлены на мачте для слежения за передвижением марсохода. Камеры имеют 45 градусное поле зрения, делают 3D изображения. Их разрешение позволяет видеть объект размером в 2 сантиметра с расстояния 25 метров.

Перед нами пустыня, голая и безжизненная. Горизонт обозначен кромкой кратера, в центре поднимается пятикилометровая вершина.

Перед нами пустыня, голая и безжизненная. Горизонт обозначен кромкой кратера, в центре поднимается пятикилометровая вершина. Прямо у наших ног блестят колеса и панели марсохода. Не пугайтесь: мы в Лондоне, где уникальная Обсерватория данных позволяет геологам перенестись в марсианскую пустыню и работать бок о бок с Curiosity, самым сложным роботом, который когда-либо отправлялся в космос.
Светящаяся на мониторах панорама составлена из кадров, присланных марсоходом на Землю. Голубое небо не должно обманывать: на Марсе оно тускло-желтое, но человеческому глазу привычнее оттенки, которые создаются светом, рассеянным нашей земной атмосферой. Поэтому снимки проходят обработку и отображаются в ненатуральных цветах, позволяя спокойно рассмотреть каждый камешек. «Геология - наука полевая, - объяснил нам профессор Имперского колледжа Лондона Санджев Гупта. - Мы любим пройтись по земле с молотком. Налить кофе из термоса, рассмотреть находки и отобрать самое интересное для лаборатории». На Марсе нет ни лабораторий, ни термосов, зато туда геологи отправили Curiosity, своего электронного коллегу. Соседняя планета интригует человечество давно, и чем больше мы ее узнаем, чем чаще обсуждаем будущую колонизацию, тем серьезнее основания для этого любопытства.

Когда-то Земля и Марс были очень похожи. Обе планеты имели океаны жидкой воды и, видимо, достаточно простой органики. И на Марсе, как на Земле, извергались вулканы, клубилась густая атмосфера, однако в один несчастливый момент что-то пошло не так. «Мы стараемся понять, каким было это место миллиарды лет назад и почему оно настолько изменилось, - сказал профессор геологии из Калифорнийского технологического института Джон Грётцингер в одном из интервью. - Мы полагаем, что там была вода, но не знаем, могла ли она поддерживать жизнь. А если могла, то поддерживала ли. Если и так, то неизвестно, сохранились ли хоть какие-то свидетельства в камнях». Выяснить все это и предстояло геологу-марсоходу.

Curiosity регулярно и тщательно фотографируется, позволяя осмотреть себя и оценить общее состояние. Это «селфи» составлено из снимков, сделанных камерой MAHLI. Она расположена на трехсуставном манипуляторе, который при объединении снимков оказался почти не виден. В кадр не попали находящиеся на нем ударная дрель, ковшик для сбора рыхлых образцов, сито для их просеивания и металлические щеточки для очистки камней от пыли. Не видны также камера для макросъемки MAHLI и рентгеновский спектрометр APXS для анализа химического состава образцов.
1. Мощным системам ровера солнечных батарей не хватит, и питание ему обеспечивает радиоизотопный термоэлектрогенератор (РИТЭГ). 4,8 кг диоксида плутония-238 под кожухом ежедневно поставляют 2,5 КВт·ч. Видны лопасти охлаждающего радиатора.
2. Лазер прибора ChemCam выдает по 50−75 наносекундных импульсов, которые испаряют камень на расстоянии до 7 м и позволяют анализировать спектр получившейся плазмы, чтобы установить состав цели.
3. Пара цветных камер MastCam ведет съемку через различные ИК-светофильтры.
4. Метеостанция REMS следит за давлением и ветром, температурой, влажностью и уровнем ультрафиолетового излучения.
5. Манипулятор с комплексом инструментов и приборов (не виден).
6. SAM - газовый хроматограф, масс-спектрометр и лазерный спектрометр
для установления состава летучих веществ в испаряемых образцах и в атмосфере.
7. CheMin выясняет состав и минералогию измельченных образцов по картине дифракции рентгеновских лучей.
8. Детектор радиации RAD заработал еще на околоземной орбите и собирал данные на протяжении всего перелета к Марсу.
9. Детектор нейтронов DAN позволяет обнаруживать водород, связанный в молекулах воды. Это российский вклад в работу марсохода.
10. Кожух антенны для связи со спутниками Mars Reconnaissance Orbiter (около 2 Мбит/с) и Mars Odyssey (около 200 Мбит/с).
11. Антенна для прямой связи с Землей в Х-диапазоне (0,5−32 кбит/с).
12. Во время спуска камера MARDI вела цветную съемку с высоким разрешением, позволив детально рассмотреть место посадки.
13. Правая и левая пары черно-белых камер Navcams для построения 3D-моделей ближайшей местности.
14. Панель с чистыми образцами позволяет проверить работу химических анализаторов марсохода.
15. Запасные биты для дрели.
16. В этот лоток ссыпаются подготовленные образцы из ковшика для изучения макрокамерой MAHLI или спектрометром APXS.
17. 20-дюймовые колеса с независимыми приводами, на титановых пружинящих спицах. По следам, оставленным рифлением, можно оценить свойства грунта и следить за движением. Рисунок включает буквы азбуки Морзе - JPL.

Начало экспедиции

Свирепый Марс - несчастливая цель для космонавтики. Начиная с 1960-х к нему отправилось почти полсотни аппаратов, большинство из которых разбилось, отключилось, не сумело выйти на орбиту и навсегда сгинуло в космосе. Однако усилия не были напрасны, и планету изучали не только с орбиты, но даже с помощью нескольких планетоходов. В 1997 году по Марсу проехался 10-килограммовый Sojourner. Легендой стали близнецы Spirit и Opportunity: второй из них героически продолжает работу уже больше 12 лет подряд. Но Curiosity - самый внушительный из них, целая роботизированная лаборатория размером с автомобиль.

6 августа 2012 года спускаемый модуль Curiosity выбросил систему парашютов, которые позволили ему замедлиться в разреженной атмосфере. Сработали восемь реактивных двигателей торможения, и система тросов осторожно опустила марсоход на дно кратера Гейла. Место посадки было выбрано после долгих споров: по словам Санджева Гупты, именно здесь нашлись все условия для того, чтобы лучше узнать геологическое - видимо, весьма бурное - прошлое Марса. Орбитальные съемки указали на наличие глин, появление которых требует присутствия воды и в которых на Земле неплохо сохраняется органика. Высокие склоны горы Шарпа (Эолиды) обещали возможность увидеть слои древних пород. Довольно ровная поверхность выглядела безопасной. Curiosity успешно вышел на связь и обновил программное обеспечение. Часть кода, использовавшегося при перелете и посадке, заменилась новой - из космонавта марсоход окончательно стал геологом.
Год первый: cледы воды

Вскоре геолог «размял ноги» - шесть алюминиевых колес, проверил многочисленные камеры и протестировал оборудование. Его коллеги на Земле рассмотрели точку посадки со всех сторон и выбрали направление. Путь до горы Шарпа должен был занять около года, и за это время предстояло немало работы. Прямой канал связи с Землей не отличается хорошей пропускной способностью, но каждый марсианский день (сол) над марсоходом пролетают орбитальные аппараты. Обмен с ними происходит в тысячи раз быстрее, позволяя ежедневно передавать сотни мегабит данных. Ученые анализируют их в Обсерватории данных, рассматривают снимки на экранах компьютеров, выбирают задачи на следующий сол или сразу на несколько и отправляют код обратно на Марс.
Работая практически на другой планете, многие из них вынуждены сами жить по марсианскому календарю и подстраиваться под чуть более длинные сутки. Сегодня для них - «солдня» (tosol), завтра - «солвтра» (solmorrow), а сутки - просто сол. Так, спустя 40 солов Санджев Гупта выступил с презентацией, на которой объявил: Curiosity движется по руслу древней реки. Мелкая, обточенная водой каменная галька указывала на течение со скоростью около 1 м/с и глубину «по щиколотку или по колено». Позднее были обработаны и данные с прибора DAN, который для Curiosity изготовила команда Игоря Митрофанова из Института космических исследований РАН. Просвечивая грунт нейтронами, детектор показал, что до сих пор на глубине в нем сохраняется до 4% воды. Это, конечно, суше, чем даже в самой сухой из земных пустынь, но в прошлом Марс все-таки был полон влаги, и марсоход мог вычеркнуть этот вопрос из своего списка.

В центре кратера
64 экрана высокого разрешения создают панораму охватом 313 градусов: Обсерватория данных KPMG в Имперском колледже Лондона позволяет геологам перенестись прямо в кратер Гейла и работать на Марсе почти так же, как на Земле. «Посмотрите поближе, вот здесь тоже следы воды: озеро было довольно глубоким. Конечно, не таким, как Байкал, но достаточно глубоким», - иллюзия была настолько реальной, что казалось, будто профессор Санджев Гупта перепрыгивал с камня на камень. Мы посетили Обсерваторию данных и пообщались с ученым в рамках мероприятий Года науки и образования Великобритании и России - 2017, организованного Британским советом и посольством Великобритании.
Год второй: cтановится опаснее

Свой первый юбилей на Марсе Curiosity встретил празднично и сыграл мелодию «С днем рожденья тебя», меняя частоту вибраций ковшика на своем тяжелом 2,1-метровом манипуляторе. Ковшиком «роборука» набирает рыхлый грунт, ровняет, просеивает и ссыпает немного в приемники своих химических анализаторов. Бур с полыми сменными битами позволяет работать с твердыми породами, а податливый песок марсоход может разворошить прямо колесами, открыв для своих инструментов внутренние слои. Именно такие эксперименты вскоре принесли довольно неприятный сюрприз: в местном грунте обнаружилось до 5% перхлоратов кальция и магния.

Вещества это не только ядовитые, но и взрывчатые, а перхлорат аммония и вовсе используется как основа твердого ракетного топлива. Перхлораты уже обнаруживались в месте посадки зонда Phoenix, однако теперь выходило, что эти соли на Марсе - явление глобальное. В ледяной бескислородной атмосфере перхлораты стабильны и неопасны, да и концентрации не слишком высоки. Для будущих колонистов перхлораты могут стать полезным источником топлива и серьезной угрозой здоровью. Но для геологов, работающих с Curiosity, они способны поставить крест на шансах обнаружить органику. Анализируя образцы, марсоход нагревает их, а в таких условиях перхлораты быстро разлагают органические соединения. Реакция идет бурно, с горением и дымом, не оставляя различимых следов исходных веществ.

Год третий: у подножия

Однако и органику Curiosity обнаружил - об этом было объявлено позже, после того как на 746-й сол, покрыв в общей сложности 6,9 км, марсоход-геолог добрался до подножия горы Шарпа. «Получив эти данные, я сразу подумал, что нужно все обязательно перепроверить», - сказал Джон Грётцингер. В самом деле, уже когда Curiosity работал на Марсе, выяснилось, что некоторые земные бактерии - такие как Tersicoccus phoenicis - устойчивы к методам уборки чистых комнат. Подсчитали даже, что к моменту запуска на марсоходе должно было остаться от 20 до 40 тыс. устойчивых спор. Никто не может поручиться, что какие-то из них не добрались с ним до горы Шарпа.

Для проверки датчиков имеется на борту и небольшой запас чистых образцов органических веществ в запаянных металлических контейнерах - можно ли стопроцентно уверенно сказать, что они остались герметичными? Однако графики, которые предъявили на пресс-конференции в NASA, сомнений не вызывали: за время работы марсианский геолог зафиксировал несколько резких - сразу в десять раз - скачков содержания метана в атмосфере. Этот газ вполне может иметь и небиологическое происхождение, но главное - когда-то он мог стать источником более сложных органических веществ. Следы их, прежде всего хлорбензол, обнаружились и в грунте Марса.
Годы четвертый и пятый: живые реки

К этому времени Curiosity пробурил уже полтора десятка отверстий, оставив вдоль своего пути идеально круглые 1,6-сантиметровые следы, которые когда-нибудь обозначат туристический маршрут, посвященный его экспедиции. Электромагнитный механизм, заставлявший дрель совершать до 1800 ударов в минуту для работы с самой твердой породой, вышел из строя. Однако изученные выходы глин и кристаллы гематита, слои силикатных шпатов и прорезанные водой русла открывали уже однозначную картину: некогда кратер был озером, в которое спускалась ветвящаяся речная дельта.

Камерам Curiosity теперь открывались склоны горы Шарпа, сам вид которых оставлял мало сомнений в их осадочном происхождении. Слой за слоем, сотнями миллионов лет вода то прибывала, то отступала, нанося породы и оставляя выветриваться в центре кратера, пока не ушла окончательно, собрав целую вершину. «Там, где сейчас возвышается гора, когда-то был бассейн, время от времени заполнявшийся водой», - пояснил Джон Грётцингер. Озеро стратифицировалось по высоте: условия на мелководье и на глубине различались и температурой, и составом. Теоретически это могло обеспечить условия для развития разнообразных реакций и даже микробных форм.

Цвета на трехмерной модели кратера Гейла соответствуют высоте. В центре расположена гора Эолида (Aeolis Mons, 01), которая на 5,5 км возвышается над одноименной равниной (Aeolis Palus, 02) на дне кратера. Отмечено место посадки Curiosity (03), а также долина Фарах (Farah Vallis, 04) - одно из предполагаемых русел древних рек, впадавших в ныне исчезнувшее озеро.
Путешествие продолжается

Экспедиция Curiosity далеко не закончена, да и энергии бортового генератора должно хватить на 14 земных лет работы. Геолог остается в пути уже почти 1750 солов, преодолев больше 16 км и поднявшись по склону на 165 м. Насколько могут заглянуть его инструменты, выше по‑прежнему видны следы осадочных пород древнего озера, но как знать, где они кончаются и на что еще укажут? Робот-геолог продолжает восхождение, а Санджев Гупта и его коллеги уже выбирают место для посадки следующего. Несмотря на гибель спускаемого зонда Schiaparelli, орбитальный модуль TGO в прошлом году благополучно вышел на орбиту, запустив первый этап европейско-российской программы «Экзомарс». Марсоход, который должен стартовать в 2020 году, станет следующим.

Российских приборов в нем будет уже два. Сам робот примерно вдвое легче Curiosity, зато его бур сможет забирать пробы с глубины уже до 2 м, а комплекс приборов Pasteur включит инструменты для прямого поиска следов прошлой - или даже сохранившейся до сих пор - жизни. «У вас есть заветное желание, находка, о которой вы особенно мечтаете?» - спросили мы профессора Гупту. «Безусловно, есть: окаменелость, - ученый ответил не раздумывая. - Но это, конечно, вряд ли произойдет. Если жизнь там и была, то только какие-нибудь микробы… Но ведь, согласитесь, это стало бы чем-то невероятным».

Наука

Марсоход НАСА Curiosity , который работает на Марсе уже более полутора лет , успел сделать немало открытий, расширив наши знания и представления о Красной планете, особенно о ее далеком прошлом.

Марс и Земля, как оказалось, на ранних этапах существования, были весьма похожи . Появилось даже предположение, что жизнь вначале зародилась на Марсе, а затем уже попала на Землю. Однако это всего лишь догадки. Многие вещи мы не знаем наверняка, однако очень близко подходим к разгадке.

Марсоход Curiosity

1) Ранний Марс был населен живыми существами, возможно, в течение долгого времени

После того, как группа исследователей, которые работают с марсоходом Curiosity , выяснила, что когда-то в кратере Гейла текли реки и ручьи, они сообщили, что там также плескалось целое озеро . Это небольшое вытянутое озеро с пресной водой, вероятно, существовало примерно 3,7 миллиарда лет назад

Эта вода на поверхности планеты, как и подземные воды, которые ушли на глубину несколько сот метров , содержали все необходимое для зарождения микроскопической жизни.

Кратер Гейла был более теплым, влажным и обитаемым примерно 3,5 - 4 миллиарда лет назад . Именно тогда и на Земле стали появляться первые живые организмы, по мнению ученых.

Был ли Марс домом для примитивных внеземных существ? Марсоход Curiosity не может и никогда не сможет дать 100-процентно точный ответ на этот вопрос, однако открытия, которые он сделал, позволяют сделать вывод, что вероятность того, что примитивные марсиане все же существовали, очень велика.

Кратер Гейла

2) Вода когда-то текла во многих уголках Марса

Ученые еще совсем недавно не могли даже предположить, что на Марсе когда-то были бурные реки и большие водоемы жидкой воды. Наблюдения с помощью искусственных спутников, которые находятся на орбите Марса, позволяли исследователям догадываться об этом. Однако именно марсоход Curiosity помог доказать, что реки и озера действительно существовали.

Фото, сделанные марсоходом на поверхности Красной планеты, демонстрируют множество окаменелых структур , которые являются следами существовавших тут когда-то рек и ручьев, каналов, дельт и озер.

Марсоход новости

3) На Марсе найдены следы органических веществ

Поиск органических компонентов на основе углерода - одна из основных целей миссии марсохода Curiosity , задача, которую он будет выполнять и дальше. И хотя миниатюрная химическая лаборатория на его борту под названием Sample Analysis at Mars (SAM) уже обнаружила целых шесть различных органических компонентов , их происхождение пока остается загадкой.

Химическая лаборатория на борту марсохода Sample Analysis at Mars

"Нет сомнений в том, что SAM выявила органические вещества, но мы не можем сказать с уверенностью, что эти компоненты марсианского происхождения", - говорят исследователи. Существует несколько вариантов происхождения этих веществ, например, просачивание в печи SAM органических растворителей с Земли, которые необходимы для некоторых химических экспериментов.

Впрочем, поиски органики на Марсе весьма продвинулись за время работы Curiosity . Каждая новая коллекция марсианского грунта и песка содержала все большую концентрацию органических веществ, то есть различные образцы марсианского материала демонстрируют совершенно разные результаты. Если бы органика, найденная на Марсе, была земного происхождения, ее концентрация была бы более-менее стабильна .

SAM является самым сложным и важным инструментом, когда-либо работающем на другой планете. Естественно, нужно время, чтобы понять, как лучше всего с ним работать .

Марсоход 2013

4) На Марсе губительная радиация

Галактические космические лучи и солнечная радиация атакуют Марс, а высокоэнергичные частицы разбивают связи, которые позволяют живым организмам выжить . Когда прибор под названием , который измеряет уровень радиации, сделал первые измерения на поверхности Красной планеты, результаты были просто ошеломляющими .

Radiation Assessment Detector

Радиация, которую засекли на Марсе, просто губительна для микробов , которые могли жить на поверхности и на глубине несколько метров под землей. Более того, такая радиация, скорее всего, наблюдалась тут в течение последних нескольких миллионов лет .

Чтобы проверить, способны ли какие-либо живые существа выжить при таких условиях, ученые взяли в качестве модели земную бактерию Deinococcus radiodurans , которая способна выдержать невероятные дозы радиации . Если бактерии, подобные D. radiodurans, появились в те времена, когда Марс был более влажной и теплой планетой и когда на нем еще существовала атмосфера, тогда теоретически они могли выжить после долгого периода покоя.

Живучая бактерия Deinococcus radiodurans

Марсоход Curiosity 2013

5) Радиация Марса мешает нормальному протеканию химических реакций

Ученые, работающие с марсоходом Curiosity , подчеркивают, что из-за того, что радиация мешает нормальному протеканию химических реакций на Марсе, трудно обнаружить органику на его поверхности.

Используя метод радиоактивного распада , который также применяется на Земле, ученые из Калифорнийского технологического института выяснили, что поверхность в районе местности Гленелг (кратер Гейла) подвергалась влиянию радиации уже около 80 миллионов лет .

Этот новый метод может помочь находить места на поверхности планеты, которые меньше были подвержены радиации , мешающей протеканию химических реакций. Такие места могут быть в районе скал и выступов, которые обтесывались ветрами. Радиация в этих районах могла блокироваться породами, которые нависали сверху. Если исследователи найдут такие места, они начнут бурить именно там.

Марсоход последние новости

Задержки в пути

Марсоходу Curiosity сразу после приземления был задан особый маршрут , согласно которому он должен держать курс к интересной с научной точки зрения горе Шарпа высотой около 5 километров , расположенной в центре кратера Гейла . Миссия длится уже более 480 дней , а марсоходу требуется еще несколько месяцев, чтобы добраться до искомой точки.

Что же задержало марсоход? На пути к горе была обнаружена масса важной и интересной информации . В настоящее время Curiosity направляется к горе Шарпа практически без остановок, пропуская потенциально интересные места.

Найдя и проанализировав потенциально обитаемую среду на Марсе, исследователи Curiosity будут продолжать работу. Когда станет ясно, где находятся защищенные от радиации места, марсоходу будет дана команда бурить. А пока Curiosity приближается к первоначальной цели - горе Шарпа.

Фото с марсохода


Взятие образцов


Фото, сделанное марсоходом во время его работы в местности Rocknest в октябре-ноябре 2012


Автопортрет. Фото представляет собой коллаж из десятков снимков, сделанных с помощью камеры на конце руки-робота марсохода. Вдалеке виднеется гора Шарпа


Первые образцы марсианского грунта, взятые марсоходом

Яркий объект в центре снимка – скорее всего, обломок корабля, который откололся во время приземления

Автопортрет «Кьюриосити»

Марсианская научная лаборатория (МНЛ) (Mars Science Laboratory , сокр. MSL ), «Марс сайенс лэборатори» - миссия НАСА , в ходе выполнения которой на был успешно доставлен и эксплуатируется третьего поколения «Кьюриосити» (Curiosity , - любопытство, любознательность ). Марсоход представляет собой автономную химическую лабораторию в несколько раз больше и тяжелее предыдущих марсоходов «Спирит» и «Оппортьюнити». Аппарат должен будет за несколько месяцев пройти от 5 до20 километров и провести полноценный анализ марсианских почв и компонентов атмосферы. Для выполнения контролируемой и более точной посадки использовались вспомогательные ракетные двигатели.

Запуск «Кьюриосити» к Марсу состоялся 26 ноября 2011 года, мягкая посадка на поверхность Марса - 6 августа 2012 года. Предполагаемый срок службы на Марсе - один марсианский год (686 земных суток).

MSL - часть долговременной программы НАСА по исследованию Марса роботизированными зондами Mars Exploration Program. В проекте, помимо НАСА, участвуют также Калифорнийский технологический институт и Лаборатория реактивного движения. Руководитель проекта - Дуг Маккистион (Doug McCuistion), сотрудник НАСА из отдела изучения других планет.Полная стоимость проекта MSL составляет примерно 2,5 миллиарда долларов.

Специалисты американского космического агентства НАСА решили отправить марсоход в кратер Гейла. В огромной воронке хорошо просматриваются глубинные слои марсианского грунта, раскрывающие геологическую историю красной планеты.

Название «Кьюриосити» было выбрано в 2009 году среди вариантов, предложенных школьниками, путём голосования в сети Интернет. Среди других вариантов были Adventure («Приключение»), Amelia , Journey («Путешествие»),Perception («Восприятие»), Pursuit («Стремление»), Sunrise («Восход»), Vision («Ви́дение»), Wonder («Чудо»).

История

Космический аппарат в собранном виде.

В апреле 2004 года НАСА начало отбор предложений по оснащению нового марсохода научным оборудованием, и 14 декабря 2004 года было принято решение об отборе восьми предложений. В конце того же года началась разработка и испытания составных частей системы, включая разработку однокомпонентного двигателя производства компании Aerojet, который способен выдавать тягу в диапазоне от 15 до 100 % от максимальной при постоянном давлении наддува.

Создание всех компонентов марсохода было завершено к ноябрю 2008 года, причём большая часть инструментов и программного обеспечения MSL продолжало испытываться. Перерасход бюджета миссии составил около 400 миллионов долларов. В следующем месяце НАСА отложило запуск MSL на конец 2011 года из-за недостатка времени для испытаний.

С 23 по 29 марта 2009 года на сайте НАСА проводилось голосование по выбору названия для марсохода, на выбор было дано 9 слов. 27 мая 2009 года победителем было объявлено слово «Кьюриосити». Оно было предложено шестиклассницей из Канзаса Кларой Ма.

Марсоход был запущен ракетой “Атлас-5” с мыса Канаверал 26 ноября 2011 года. 11 января 2012 года был проведён специальный манёвр, который эксперты называют «самым важным» для марсохода. В результате совершённого манёвра аппарат взял курс, который привёл его в оптимальную точку для десантирования на поверхность Марса.

28 июля 2012 года была проведена четвёртая небольшая коррекция траектории, двигатели включили всего на шесть секунд. Операция прошла настолько успешно, что финальная коррекция, изначально намеченная на 3 августа, не потребовалась.

Посадка произошла успешно 6 августа 2012 года, в 05:17 UTC. Радиосигнал, сообщающий об успешной посадке марсохода на поверхность Марса, достиг в 05:32 UTC.

Задачи и цели миссии

29 июня 2010 года инженеры из Лаборатории Реактивного Движения собрали «Кьюриосити» в большом чистом помещении, в рамках подготовки к запуску марсохода в конце 2011 года.

MSL имеет четыре основных цели:

  • установить, существовали ли когда-либо условия, подходящие для существования жизни на Марсе;
  • получить подробные сведения о климате Марса;
  • получить подробные сведения о геологии Марса;
  • провести подготовку к высадке человека на Марсе.

Для достижения этих целей перед MSL поставлено шесть основных задач:

  • определить минералогический состав марсианских почв и припочвенных геологических материалов;
  • попытаться обнаружить следы возможного протекания биологических процессов - по элементам, являющимся основой жизни, какой она известна землянам: (углерод, водород, азот, кислород, фосфор, серу);
  • установить процессы, в которых формировались марсианские камни и почвы;
  • оценить процесс эволюции марсианской атмосферы в долгосрочном периоде;
  • определить текущее состояние, распределение и круговорот воды и углекислого газа;
  • установить спектр радиоактивного излучения поверхности Марса.

Также в рамках исследований измерялось воздействие космической радиации на компоненты во время перелёта к Марсу. Эти данные помогут оценить уровни радиации, ожидающие людей в пилотируемой экспедиции на Марс.

Состав

Перелётный
модуль
Модуль управляет траекторией Mars Science Laboratory во время полёта с Земли на Марс. Также включает в себя компоненты для поддержки связи во время полёта и регулирования температуры. Перед входом в атмосферу Марса происходит разделение перелетного модуля и спускаемого аппарата.
Тыльная часть
капсулы
Капсула необходима для спуска через атмосферу. Она защищает марсоход от влияния космического пространства и перегрузок во время входа в атмосферу Марса. В тыльной части находится контейнер для парашюта. Рядом с контейнером установлено несколько антенн связи.
«Небесный кран» После того, как теплозащитный экран и тыльная часть капсула выполнят свою задачу, они расстыковываются, тем самым освобождая путь для спуска аппарата и позволяя радару определить место посадки. После расстыковки кран обеспечивает точный и плавный спуск марсохода на поверхность Марса, который достигается за счёт использования реактивных двигателей и контролируется с помощью радиолокатора на марсоходе.
Марсоход «Кьюриосити» Марсоход под названием «Кьюриосити», содержит все научные приборы, а также важные системы связи и энергоснабжения. Во время полёта шасси складывается для экономии места.
Лобовая часть
капсулы с
теплозащитным экраном
Теплозащитный экран защищает марсоход от крайне высокой температуры, воздействующей на спускаемый аппарат при торможении в атмосфере Марса.
Спускаемый аппарат Масса спускаемого аппарата (изображён в сборе с перелётным модулем) составляет 3,3 тонны. Спускаемый аппарат служит для контролируемого безопасного снижения марсохода при торможении в марсианской атмосфере и мягкой посадки марсохода на поверхность.

Технология полёта и посадки

Перелётный модуль готов к испытанию. Обратите внимание на часть капсулы снизу, в этой части находится радиолокатор, а на самом верху - солнечные батареи.

Траекторию движения Mars Science Laboratory от Земли до Марса контролировал перелётный модуль, соединённый с капсулой. Силовым элементом конструкции перелётного модуля была кольцевая ферма диаметром 4 метра, из алюминиевого сплава, укреплённая несколькими стабилизирующими стойками. На поверхности перелётного модуля были установлены 12 панелей , подключённых к системе энергоснабжения. К концу полёта, перед входом капсулы в атмосферу Марса, они вырабатывали около 1 кВт электрической энергии с КПД порядка 28,5 %. Для проведения энергоемких операций были предусмотрены литий-ионные аккумуляторы. Кроме того, система электропитания перелётного модуля, батареи спускаемого модуля и энергосистема «Кьюриосити» имели взаимные соединения, что позволяло перенаправить потоки энергии в случае возникновения неисправностей.

Ориентация космического аппарата в пространстве определялась при помощи звёздного датчика и одного из двух солнечных датчиков. Звёздный датчик наблюдал за несколькими выбранными для навигации звёздами; солнечный датчик использовал в качестве опорной точки . Эта система была спроектирована с резервированием для повышения надёжности миссии. Для коррекции траектории применялись 8 двигателей, работающих на гидразине, запас которого содержался в двух сферических титановых баках.

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...