Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Фронт пламени и зона горения. Что такое турбулентная диффузия пламени и фронт пламени

При стационарном процессе горения положение фронта пла­мени в потоке остается неизменным. Рассмотрим схематическое изображение факела пламени в потоке горючей смеси. Если скорость W была бы равной нулю, то мы имели бы сферическое рас­пространение пламени с точечным источником в центре. Однако поток сдувает пламя в направлении своего движения и в то же время пламя перемещается навстречу потоку свежей горючей смеси со скоростью U n .

Рис.3.4. Схема стационарного фронта пламени

В результате наступает равновесие, при котором фронт пламени занимает стационарное положение, а поток приносит в зону горения свежие порции горючей смеси.

Рассмотрим элемент фронта пламени. Скорость потока W может быть разложена на нормальную и тангенциальную состав­ляющие W n и W τ , которые стремятся снести фронт горения. В направлении нормали n - n скорость уравновешивается нор­мальной скоростью распространения пламени +U n .

Очевидно, если скорость W изменится, то фронт пламени займет новое положение и установится под таким углом α, при котором проекция скорости на нормаль n - n станет рав­ной нормальной скорости горения U n . При этом сама скорость U n для данной смеси, естественно, является постоянной величи­ной (Рис.3.5). Таким образом, получим первое условие су­ществования стационарного фронта пламени

│ U n │=│W│cos α (3.2)

Это выражение установлено в 1890 г. русским физиком В.А. Михельсоном и носит название "закона Михельсона", или "закона косинуса". Согласно этому закону проекция скоро­сти набегающего потока на нормаль к поверхности стационар­ного фронта пламени всегда равна нормальной скорости горе­ния.

W">W W" >W α">α

Рис.3.5. Положение стационарного фронта пламени в потоках с разной скоростью

Рассматривая участок фронта, примыкающий к источнику поджигания, становится ясно, что на место сносимых горящих частиц не будут приходить новые, если источник перестанет работать. Компенсация уноса пламени в тангенциальном направлении осуществляется постоянно действующим источником поджигания стационарного фронта пламени.

Таким образом, существуют два необходимых и достаточных условия существования стационарного фронта пламени в пото­ке горючей смеси:

1. Равенство проекции скорости распространения пламени на нормаль и нормальной составляющей к фронту пламени от скорости
потока.

2. Наличие постоянно действующего источника поджигания
с достаточной интенсивностью.

Очевидно, если W τ = 0, то фронт пламени перпендикуля­рен потоку и второе условие отпадает.

Хорошей иллюстрацией расположения ламинарного фронта пламени в потоке является пламя горелки Бунзена. Устрой­ство горелки обеспечивает предварительное смешение горюче­го и окислителя, то есть топлива с воздухом. При поджигании смеси пламя, распространяясь по ней, стре­мится войти внутрь горелки, однако этому препятствует встречный поток. В результате устанавливается устойчивое динамическое равновесие, а стационарный фронт пламени принимает форму, при которой в каждой его точке нормальная к фронту составляющая скорости равна скорости распространения пламени в смеси данного состава при данных условиях.

Одни из первых исследователей этого вопроса Малляр и Ле-Шаталье назвали зону горения "голубым конусом", на поверхности которого в каждой точке выполняется закон Михельсона.

Механизм стабилизации пламени в горелке Бунзена иллюстрируется рис.3.6.

Рис.3.6. Схема образования фронта пламени в горелке Бунзена

Геометрическое место точек стабилизации С образует кольцо, располагающееся на некотором расстоянии от среза сопла горелки. В неподвижной смеси после поджигания пламя от точек С начнёт сферически распространяться и фронты пламени сомкнутся в точке В на оси потока.

При движении смеси каждая точка фронта пламени сносится потоком одновременно с расширением сфер и в результате образуется конический фронт пламени с вершиной в точке В касания сфер.

При постоянных значениях скорости в выходном сечении горелки и U n фронт пламени должен иметь правильную коническую форму. Однако вследствие роста U n у вершины пламени из-за нагрева смеси и снижения её около холодных стенок у основания конуса пламя имеет закругление. Если горючая смесь имеет α ≤1, то кислорода в смеси не хватает для полного её сгорания и оставшееся горючее догорает во вторичном, диффузионном фронте пламени в окружающем воздухе. Диффузионный фронт пламени имеет характерный желтый цвет.

Метод горелки Бунзена является одним из самых распространенных для определения нормальной скорости горения.

Горение газовой смеси в закрытых трубах порождает эхо, которое приводит к полной перестройке фронта пламени. Детали этого явления впервые были воспроизведены при численном моделировании.

Пламя, взаимодействующее с мощной звуковой волной, способно порождать интересные пространственные структуры (см., например, впечатляющий видеоролик с «огненной визуализацией» звуковых волн). Звуковая волна при этом не обязательно должна быть внешней: интенсивное горение газовой смеси горючего и окислителя в замкнутом объеме, например в трубах, порождает эхо, которое может исказить фронт пламени и изменить режим протекания реакции горения.

Искажение формы пламени при горении в трубах известно уже более ста лет, однако лишь в классических экспериментах Джеффри Сирби (G. Searby) 1992 года было проведено систематическое изучение этого процесса. В частности, Сирби наблюдал турбулизацию пламени под действием собственного эха. Само по себе это явление не кажется удивительным, однако теоретического описания этого процесса до сих пор предложено не было. Требовали ответа вопросы «Как именно происходит переход к турбулентности?», «Какие именно колебания пламени раскачиваются первыми?» и т. п. Всё это, в свою очередь, сковывало руки исследователям, ищущим возможности практического применения этого эффекта в технологии (вообще говоря, турбулентность пламени имеет большое значение для ракетной промышленности).

В недавней статье российско-шведской группы исследователей A. Petchenko et al., Physical Review Letters, 97, 164501 (19 October 2006) был сделан первый шаг на пути к построению такой теории. Авторы этой работы провели подробное численное моделирование процесса горения газовой смеси в длинной и очень узкой трубе, закрытой с одного конца (смесь поджигалась с открытого конца, и пламя распространялось вглубь трубы). Для простоты вычислений решалась двумерная, а не трехмерная задача, газовая смесь считалась идеальным газом, а процесс горения моделировался гипотетической одноэтапной и необратимой химической реакцией с заданными тепловыделением и энергией активации. Зато вся газо- и термодинамика - сжатие и расширение, течения газа, теплопередача, структура фронта пламени - учитывались в полной мере.

Результаты моделирования однозначно доказали, что при приближении к закрытому концу фронт пламени начинал «дрожать». Эта дрожь порождала звуковое эхо той же частоты, которое еще сильнее «раскачивало» пламя. В непосредственной близости к концу трубы осцилляции пламени становились настолько сильными, что фронт пламени буквально складывался в гармошку. В течение каждого периода этих колебаний фронт пламени резко дестабилизировался, выпускал узкую и очень длинную струю холодного газа внутрь области, занятой горячими продуктами горения. Струя затем быстро сгорала, фронт пламени заворачивался вихрем и потом выравнивался вновь. Скорость течений, порожденных этими осцилляциями, в десятки раз превышала «нормальную» скорость распространения пламени в открытом пространстве.

Сильные осцилляции и порожденными ими вихри обычно являются первым этапом при переходе к турбулентности. Авторы статьи, однако, не торопятся объявлять об открытии механизма турбулизации пламени. Дело в том, что имеющиеся на сегодня вычислительные мощности позволяют провести столь детальное моделирование лишь в чрезвычайно узких трубах, скорее даже в капиллярах. Как изменится этот процесс в широких трубах, для которых и получены экспериментальные данные и в которых влияние стенок на течения существенно слабее, предстоит еще изучить. Интересно также проверить, являются ли обнаруженные в моделировании искажения пламени тем самым «тюльпанообразным пламенем», которое наблюдалось давно, но до сих пор остается необъясненным (см. C. Clanet and G. Searby. On the "Tulip Flame" Phenomenon (PDF, 1,3 Мб) // Combustion and Flame , 1996. V. 105. P. 225-238).

Структура диффузионного пламени существенно зависит от сечения потока горючих паров и газов и его скорости. По характеру потока различают ламинарное и турбулентное диффузионное пламя.

Турбулентное называется беспокойное, закрученное вихрями пламя постоянно меняющейся формы.

при увеличении расхода, пламя меняет свою форму и становится беспокойным, закрученным вихрями, постоянно меняющейся формы, это – турбулентное пламя.

Такое поведение пламени при турбулентном режиме объясняется тем, что в зону горения начинает поступает гораздо большее количество горючего газа, то есть в момент времени должно окисляться все больше и больше горючего, что приводит к увеличению размеров пламени и дальнейшей его турбулизации.

Фронт пламени – тонкий поверхностный слой, ограничивающий пламя, непосредственно в котором протекают окислительно-восстановительные реакции.

Толщина фронта пламени невелика, она зависит от газодинамических параметров и механизма распространения пламени (дефлаграционный или детонационный) и может составлять от десятых долей миллиметра до нескольких сантиметров. Внутри пламени практически весь объем занимают горючие газы (ГГ) и пары. Во фронте пламени находятся продукты горения (ПГ). В окружающей среде находится окислитель.

Схема диффузионного пламени газовой горелки и изменение концентраций горючих веществ, окислителя и продуктов горения по сечению пламени приведены на рис. 1.2.

Толщина фронта пламени разнообразных газовых смесей в ламинарном режиме составляет 0,5 – 10 -3 см. Среднее время полного превращения топлива в продукты горения в этой узкой зоне составляет 10 -3 –10 -6 с.

Зона максимальных температур расположена на 5-10 мм выше светящегося конуса пламени и для пропан-воздушной смеси составляет порядка 1600 К.

Диффузионное пламя возникает при горении, когда процессы горения и смешения протекают одновременно.

Как отмечалось ранее, главное отличие диффузионного горения от горения заранее перемешанных горючих смесей состоит в том, что скорость химического превращения при диффузионном горении лимитируется процессом смешения окислителя и горючего, даже если скорость химической реакции очень велика, интенсивность горения ограничена условиями смешения.

Важным следствием этого представления является тот факт, что во фронте пламени горючее и окислитель находятся в стехиометрическом соотношении. В каких соотношениях не находились бы подаваемые раздельно потоки окислителя и горючего, фронт пламени всегда устанавливается в таком положении, чтобы поступление реагентов происходило в стехиометрических соотношениях. Это подтверждено многими экспериментами.


Движущей силой диффузии кислорода в зону горения является разность его концентраций внутри пламени (С О = 0) и в окружающем воздухе (начальная С О = 21%). С уменьшением этой разности скорость диффузии кислорода уменьшается и при определенных концентрациях кислорода в окружающем воздухе – ниже 14-16 %, горение прекращается. Такое явление самопроизвольного затухания (самозатухания) наблюдается при горении в замкнутых объемах.

Каждое пламя занимает в пространстве определенный объем, внешние границы которого могут быть четко или нечетко ограничены. При горении газов форма и размеры образующегося пламени зависят от характера исходной смеси, формы горелки и стабилизирующих устройств. Влияние состава горючего на форму пламени определяется его влиянием на скорость горения.

Высота пламени является одной из основных характеристик размера пламени. Это особенно важно при рассмотрении горения и тушения газовых фонтанов, горения нефтепродуктов в открытых резервуарах.

Высота пламени тем больше, чем больше диаметр трубы и больше скорость истечения, и тем меньше, чем больше нормальная скорость распространения пламени.

Для заданной смеси горючего и окислителя высота пламени пропорциональна скорости потока и квадрату диаметра струи:

где - скорость потока;

Диаметр струи;

Коэффициент диффузии.

Но при этом форма пламени остается неизвестной и зависит от естественной конвекции и распределения температур во фронте пламени.

Эта зависимость сохраняется до определенного значения скорости потока. При возрастании скорости потока пламя турбулизируется, после чего прекращается дальнейшее увеличение его высоты. Этот переход совершается, как уже отмечалось, при определенных значениях критерия Рейнольдса.

Для пламен, когда происходит значительное выделение несгоревших частиц в виде дыма, понятие высота пламени теряет свою определенность, т.к. трудно определить границу сгорания газообразных продуктов в вершине пламени.

Кроме того, в пламенах, содержащих твердые частицы, по сравнению с пламенами, содержащими только газообразные продукты сгорания, значительно возрастает излучение.

3. РАСПРОСТРАНЕНИЕ ПЛАМЕНИ В ГАЗОВЫХ СМЕСЯХ

Скорость распространения пламени при горении твердых, жидких и газообразных веществ представляет практический интерес в плане предупреждения пожаров и взрывов. Рассмотрим скорость распространения пламени в смесях горючих газов и паров с воздухом. Зная эту скорость, можно определить безопасные скорости газовоздушного потока в трубопроводе, шахте, вентиляционной установке и других взрывоопасных системах.

3.1. СКОРОСТЬ РАСПРОСТРАНЕНИЯ ПЛАМЕНИ

В качестве примера на рис. 3.1 приведена схема вытяжной вентиляции в угольной шахте. Из штреков шахты 1 по трубопроводу 2 осуществляется удаление запыленной смеси воздуха и угольной пыли, а в ряде случаев – выделившегося в угольных пластах метана. При возникновении очага возгорания, фронт пламени 3 будет распространяться в сторону штреков 1. Если скорость движения горючей смеси w будет меньше скорости распространения фронта пламени и относительно стенок трубки, то пламя распространится в шахту и приведет к взрыву. Поэтому для нормальной работы системы вентиляции необходимо соблюдение условия

w > u.

Скорость удаления взрывоопасной смеси должна быть больше скорости распространения фронта пламени. Это позволит не допустить попадания пламени в штреки шахты.

Рис. 3.1. Схема распространения пламени в шахте:

1 – шахта; 2 – трубопровод; 3 – фронт пламени

Теория распространения пламени, развитая в работах Я.Б. Зельдовича и Д.А. Франк-Каменецкого, основана на уравнениях теплопроводности, диффузии и химической кинетики. Воспламенение горючей смеси всегда начинается в одной точке и распространяется по всему объему, занимаемому горючей смесью. Рассмотрим одномерный случай – трубку, заполненную горючей смесью (рис. 3.2).

Если смесь поджечь с одного конца трубки, то узкий фронт пламени будет распространяться вдоль трубки, отделяя продукты горения (позади фронта пламени) от свежей горючей смеси. Фронт пламени имеет вид колпачка или конуса, обращенного выпуклой частью в сторону движения пламени. Фронт пламени представляет собой тонкий газовый слой шириной (10 -4 ÷10 -6) м. В этом слое, который называется зоной горения, протекают химические реакции горения. Температура фронта пламени в зависимости от состава смеси составляет Т = (1500÷3000) К. Выделяющаяся теплота горения расходуется на нагрев продуктов сгорания свежей горючей смеси и стенок трубки за счет процессов теплопроводности и излучения.

Рис. 3.2. Схема распространения фронта пламени в трубке

При движении фронта пламени в трубке в горючей смеси возникают волны сжатия, которые создают вихревые движения. Завихрения газов искривляют фронт пламени, не изменяя его толщины и характера протекающих в нем процессов. На единице поверхности фронта пламени всегда сгорает одно и тоже количество вещества в единицу времени . Величина является постоянной для каждой горючей смеси и называется массовой скоростью горения. Зная площадь фронта пламени S , можно рассчитать массу вещества М , сгораемого во всем фронте горения в единицу времени:

Каждый элемент фронта пламени dS перемещается относительно свежей смеси всегда по направлению нормали к фронту пламени в данной точке (рис. 3.2), причем скорость этого перемещения:

где – плотность свежей горючей смеси.

Величина называется нормальной скоростью распространения пламени и имеет размерность м/с. Она является постоянной величиной процесса горения данной смеси и не зависит от гидродинамических условий, сопутствующих процессу горения. Нормальная скорость распространения пламени всегда меньше наблюдаемой скорости и , то есть скорости перемещения фронта горения относительно стенок трубки:

u n < u .

Если фронт пламени плоский и направлен перпендикулярно оси трубки, то в этом случае наблюдаемая и нормальная скорость распространения пламени будут одинаковы

u n = u .

Площадь выпуклого фронта пламени S вып всегда больше площади плоского фронта S пл , поэтому

> 1.

Нормальная скорость распространения пламени u n для каждой горючей смеси зависит от примеси инертных газов, температуры смеси, влажности и других факторов. В частности, предварительный подогрев горючего газа увеличивает скорость распространения пламени. Можно показать, что скорость распространения пламени u n пропорциональна квадрату абсолютной температуры смеси:

u n .= const · T 2 .

На рис. 3.3 приведена зависимость скорости распространения пламени в горючей смеси „воздух – угарный газ” в зависимости от концентрации СО. Как следует из приведенных графиков, скорость распространения пламени возрастает с увеличением температуры смеси. Для каждого значения температуры скорость распространения пламени имеет максимум в области концентрации угарного газа СО, равной ~ 40%.

На скорость распространения пламени влияет теплоемкость инертного газа. Чем больше теплоемкость инертного газа, тем больше он снижает температуру горения и тем сильнее уменьшает скорость распространения пламени. Так, если смесь метана с воздухом разбавить углекислым газом, то скорость распространения пламени может уменьшиться в 2÷3 раза. На скорость распространения пламени в смесях оксида углерода с воздухом оказывает большое влияние влага, содержащаяся в смеси, наличие сажевых частиц и примеси инертных газов.

Рис. 3.3. Зависимость скорости распространения пламени

от концентрации угарного газа в смеси

Требования к камерам сгорания и их характеристики

Камеры сгорания ГТУ работают в широком диапазоне нагрузок. Они должны иметь малые габариты, массу, быть работоспособным при сжигании различных видов топлива. Кроме того, КС должны обеспечить допустимый уровень вредных выбросов с продуктами сгорания (окислов азота, серы). Особые требования к КС предъяв­лялся с точки зрения эксплуатационной надежности, так как они находятся в тяжелых температурных условиях.

Кроме того, камеры сгорания должны иметь:

· высокий коэффициент полноты сгорания;

· малые потери давления;

· малые габариты, т.е. большую теплонапряженность;

· заданное поле температур;

· быстрый и надежный пуск;

· достаточно большой ресурс;

· достаточное удобство монтажа и профилактического обслуживания.

Коэффициент полноты сгорания (или К.П.Д. камеры сгорания) определяется как:

где Q 1 – количество тепла, фактически выделившееся в рабо­чем объеме камеры; Q 2 – полное количество тепла, которое тео­ретически могло бы выделяться при полном сгорании топлива.

Факел в камере сгорания, развивающийся в условиях вынужденного дви­жения с центральным подводом топлива состоит из трех основных зон: внутренняя зона I, зона смесеобразования и горения II, и зона III - зона наружного воздуха рис. 4.2.

В зоне II 0 ≤ α ≥ ∞. Во внутренней зоне воздух отсутствует α = 0.

В зоне 2 осуществляется смесеобразование и горение. Она делится условно на две: внутренняя - а, и внешняя - б.

Внутренняя зона заполнена смесью из горючего газа и продуктов сгорания, а наружная смесью продуктов сгорания и воздуха. Граница между зонами – фронт пламени горения. В этом промежутке имеются все области от α = 0 до α = ∞. В толще фронта горения α= 1; топливо, перемещаясь от корня к хвосто­вой зоне, разбавляется продуктами сгорания, а воздух насыщается продуктами сгорания. Это приводит к тому, что в зоне сгорания теплота сгорания топлива уменьшается, т.е. уменьшается количество теплоты,

Рис. 4.2. Фронт пламени горения.

приходящееся на единицу поверхности фронта сгорания, условия сгорания ухудшаются вплоть до воз­можного загасания пламени и выноса части несгоревшего топлива. Следует иметь в виду, что этот процесс характерен для неограниченного пространства. В реальных КС характер горения, в связи с тем, что поток ограничен, в значи­тельной мере определяется аэродинамическими свойствами КС. Причем в зо­не горения поддерживается высокая температура, что приводит к сгоранию смеси с весьма высокими скоростями, в этом случае скорость сгорания опреде­ляется в первую очередь скоростью смесеобразования, т.к. скорость химиче­ских реакций будет во много раз больше, чем скорость смесеобразования. Такой процесс называется диффузионным горением. Он легко управляется за счет изменений условий смесеобразования, который, в свою очередь, можно изме­нять конструкционными мероприятиями - использованием лопаточных кольце­вых решеток в качестве турбулизаторов и др.



Одной из главных характеристик камеры сгорания является величина теплового напряжения, которое представ­ляет собой отношение количества теплоты, выделившегося в камере сгорания, к ее объему при давлении сгорания.

Дж/м 2 МПа (4.10)

где Р КС – давление рабочего тела в камере сгорания, МПа; V – объем камеры сгорания, м 3 .

На основа­нии величины удельной теплонапряженности определяется объем камеры сго­рания.

Для создания устойчивого горения во всем диапазоне рабочих режимов важ­на организация процесса горения, которая характеризуется поверхностью фронта пламени горения и определяется из уравнения:

где U Т – турбулентная скорость распространения пламени она, как правило, при­нимается в интервале (40 ÷ 60 м/с); F ф – фронт пламени горения; теплота сгорания смеси; ρ см - плотность смеси.

Низшая теплота сгорания смеси определяется из уравнения:

Плотность смеси определяется из уравнения Менделеева-Клайперона:

где Т КС – температура смеси в камере сгорания.

Фронт пламени горения по уравнению:

Устойчивое горение возможно при F тф F ф.

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...