Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Как найти четность и нечетность функции примеры. Четные и нечетные функции

Функция называется четной (нечетной), если для любогои выполняется равенство

.

График четной функции симметричен относительно оси
.

График нечетной функции симметричен относительно начала координат.

Пример 6.2. Исследовать на четность или нечетность функции

1)
; 2)
; 3)
.

Решение .

1) Функция определена при
. Найдем
.

Т.е.
. Значит, данная функция является четной.

2) Функция определена при

Т.е.
. Таким образом, данная функция нечетная.

3) функция определена для , т.е. для

,
. Поэтому функция не является ни четной, ни нечетной. Назовем ее функцией общего вида.

3. Исследование функции на монотонность.

Функция
называется возрастающей (убывающей) на некотором интервале, если в этом интервале каждому большему значению аргумента соответствует большее (меньшее) значение функции.

Функции возрастающие (убывающие) на некотором интервале называются монотонными.

Если функция
дифференцируема на интервале
и имеет положительную (отрицательную) производную
, то функция
возрастает (убывает) на этом интервале.

Пример 6.3 . Найти интервалы монотонности функций

1)
; 3)
.

Решение .

1) Данная функция определена на всей числовой оси. Найдем производную .

Производная равна нулю, если
и
. Область определения – числовая ось, разбивается точками
,
на интервалы. Определим знак производной в каждом интервале.

В интервале
производная отрицательна, функция на этом интервале убывает.

В интервале
производная положительна, следовательно, функция на этом интервале возрастает.

2) Данная функция определена, если
или

.

Определяем знак квадратного трехчлена в каждом интервале.

Таким образом, область определения функции

Найдем производную
,
, если
, т.е.
, но
. Определим знак производной в интервалах
.

В интервале
производная отрицательна, следовательно, функция убывает на интервале
. В интервале
производная положительна, функция возрастает на интервале
.

4. Исследование функции на экстремум.

Точка
называется точкой максимума (минимума) функции
, если существует такая окрестность точки, что для всех
из этой окрестности выполняется неравенство

.

Точки максимума и минимума функции называются точками экстремума.

Если функция
в точкеимеет экстремум, то производная функции в этой точке равна нулю или не существует (необходимое условие существования экстремума).

Точки, в которых производная равна нулю или не существует называются критическими.

5. Достаточные условия существования экстремума.

Правило 1 . Если при переходе (слева направо) через критическую точку производная
меняет знак с «+» на «–», то в точкефункция
имеет максимум; если с «–» на «+», то минимум; если
не меняет знак, то экстремума нет.

Правило 2 . Пусть в точке
первая производная функции
равна нулю
, а вторая производная существует и отлична от нуля. Если
, то– точка максимума, если
, то– точка минимума функции.

Пример 6.4 . Исследовать на максимум и минимум функции:

1)
; 2)
; 3)
;

4)
.

Решение.

1) Функция определена и непрерывна на интервале
.

Найдем производную
и решим уравнение
, т.е.
.Отсюда
– критические точки.

Определим знак производной в интервалах ,
.

При переходе через точки
и
производная меняет знак с «–» на «+», поэтому по правилу 1
– точки минимума.

При переходе через точку
производная меняет знак с «+» на «–», поэтому
– точка максимума.

,
.

2) Функция определена и непрерывна в интервале
. Найдем производную
.

Решив уравнение
, найдем
и
– критические точки. Если знаменатель
, т.е.
, то производная не существует. Итак,
– третья критическая точка. Определим знак производной в интервалах.

Следовательно, функция имеет минимум в точке
, максимум в точках
и
.

3) Функция определена и непрерывна, если
, т.е. при
.

Найдем производную

.

Найдем критические точки:

Окрестности точек
не принадлежат области определения, поэтому они не являются т. экстремума. Итак, исследуем критические точки
и
.

4) Функция определена и непрерывна на интервале
. Используем правило 2. Найдем производную
.

Найдем критические точки:

Найдем вторую производную
и определим ее знак в точках

В точках
функция имеет минимум.

В точках
функция имеет максимум.

четной , если при всех \(x\) из ее области определения верно: \(f(-x)=f(x)\) .

График четной функции симметричен относительно оси \(y\) :

Пример: функция \(f(x)=x^2+\cos x\) является четной, т.к. \(f(-x)=(-x)^2+\cos{(-x)}=x^2+\cos x=f(x)\) .

\(\blacktriangleright\) Функция \(f(x)\) называется нечетной , если при всех \(x\) из ее области определения верно: \(f(-x)=-f(x)\) .

График нечетной функции симметричен относительно начала координат:

Пример: функция \(f(x)=x^3+x\) является нечетной, т.к. \(f(-x)=(-x)^3+(-x)=-x^3-x=-(x^3+x)=-f(x)\) .

\(\blacktriangleright\) Функции, не являющиеся ни четными, ни нечетными, называются функциями общего вида. Такую функцию можно всегда единственным образом представить в виде суммы четной и нечетной функции.

Например, функция \(f(x)=x^2-x\) является суммой четной функции \(f_1=x^2\) и нечетной \(f_2=-x\) .

\(\blacktriangleright\) Некоторые свойства:

1) Произведение и частное двух функций одинаковой четности - четная функция.

2) Произведение и частное двух функций разной четности - нечетная функция.

3) Сумма и разность четных функций - четная функция.

4) Сумма и разность нечетных функций - нечетная функция.

5) Если \(f(x)\) - четная функция, то уравнение \(f(x)=c \ (c\in \mathbb{R}\) ) имеет единственный корень тогда и только когда, когда \(x=0\) .

6) Если \(f(x)\) - четная или нечетная функция, и уравнение \(f(x)=0\) имеет корень \(x=b\) , то это уравнение обязательно будет иметь второй корень \(x=-b\) .

\(\blacktriangleright\) Функция \(f(x)\) называется периодической на \(X\) , если для некоторого числа \(T\ne 0\) выполнено \(f(x)=f(x+T)\) , где \(x, x+T\in X\) . Наименьшее \(T\) , для которого выполнено данное равенство, называется главным (основным) периодом функции.

У периодической функции любое число вида \(nT\) , где \(n\in \mathbb{Z}\) также будет являться периодом.

Пример: любая тригонометрическая функция является периодической;
у функций \(f(x)=\sin x\) и \(f(x)=\cos x\) главный период равен \(2\pi\) , у функций \(f(x)=\mathrm{tg}\,x\) и \(f(x)=\mathrm{ctg}\,x\) главный период равен \(\pi\) .

Для того, чтобы построить график периодической функции, можно построить ее график на любом отрезке длиной \(T\) (главный период); тогда график всей функции достраивается сдвигом построенной части на целое число периодов вправо и влево:

\(\blacktriangleright\) Область определения \(D(f)\) функции \(f(x)\) - это множество, состоящее из всех значений аргумента \(x\) , при которых функция имеет смысл (определена).

Пример: у функции \(f(x)=\sqrt x+1\) область определения: \(x\in

Задание 1 #6364

Уровень задания: Равен ЕГЭ

При каких значениях параметра \(a\) уравнение

имеет единственное решение?

Заметим, что так как \(x^2\) и \(\cos x\) - четные функции, то если уравнение будет иметь корень \(x_0\) , оно также будет иметь и корень \(-x_0\) .
Действительно, пусть \(x_0\) – корень, то есть равенство \(2x_0^2+a\mathrm{tg}\,(\cos x_0)+a^2=0\) верно. Подставим \(-x_0\) : \(2 (-x_0)^2+a\mathrm{tg}\,(\cos(-x_0))+a^2=2x_0^2+a\mathrm{tg}\,(\cos x_0)+a^2=0\) .

Таким образом, если \(x_0\ne 0\) , то уравнение уже будет иметь как минимум два корня. Следовательно, \(x_0=0\) . Тогда:

Мы получили два значения параметра \(a\) . Заметим, что мы использовали то, что \(x=0\) точно является корнем исходного уравнения. Но мы нигде не использовали то, что он единственный. Следовательно, нужно подставить получившиеся значения параметра \(a\) в исходное уравнение и проверить, при каких именно \(a\) корень \(x=0\) действительно будет единственным.

1) Если \(a=0\) , то уравнение примет вид \(2x^2=0\) . Очевидно, что это уравнение имеет лишь один корень \(x=0\) . Следовательно, значение \(a=0\) нам подходит.

2) Если \(a=-\mathrm{tg}\,1\) , то уравнение примет вид \ Перепишем уравнение в виде \ Так как \(-1\leqslant \cos x\leqslant 1\) , то \(-\mathrm{tg}\,1\leqslant \mathrm{tg}\,(\cos x)\leqslant \mathrm{tg}\,1\) . Следовательно, значения правой части уравнения (*) принадлежат отрезку \([-\mathrm{tg}^2\,1; \mathrm{tg}^2\,1]\) .

Так как \(x^2\geqslant 0\) , то левая часть уравнения (*) больше или равна \(0+ \mathrm{tg}^2\,1\) .

Таким образом, равенство (*) может выполняться только тогда, когда обе части уравнения равны \(\mathrm{tg}^2\,1\) . А это значит, что \[\begin{cases} 2x^2+\mathrm{tg}^2\,1=\mathrm{tg}^2\,1 \\ \mathrm{tg}\,1\cdot \mathrm{tg}\,(\cos x)=\mathrm{tg}^2\,1 \end{cases} \quad\Leftrightarrow\quad \begin{cases} x=0\\ \mathrm{tg}\,(\cos x)=\mathrm{tg}\,1 \end{cases}\quad\Leftrightarrow\quad x=0\] Следовательно, значение \(a=-\mathrm{tg}\,1\) нам подходит.

Ответ:

\(a\in \{-\mathrm{tg}\,1;0\}\)

Задание 2 #3923

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых график функции \

симметричен относительно начала координат.

Если график функции симметричен относительно начала координат, то такая функция является нечетной, то есть выполнено \(f(-x)=-f(x)\) для любого \(x\) из области определения функции. Таким образом, требуется найти те значения параметра, при которых выполнено \(f(-x)=-f(x).\)

\[\begin{aligned} &3\mathrm{tg}\,\left(-\dfrac{ax}5\right)+2\sin \dfrac{8\pi a+3x}4= -\left(3\mathrm{tg}\,\left(\dfrac{ax}5\right)+2\sin \dfrac{8\pi a-3x}4\right)\quad \Rightarrow\quad -3\mathrm{tg}\,\dfrac{ax}5+2\sin \dfrac{8\pi a+3x}4= -\left(3\mathrm{tg}\,\left(\dfrac{ax}5\right)+2\sin \dfrac{8\pi a-3x}4\right) \quad \Rightarrow\\ \Rightarrow\quad &\sin \dfrac{8\pi a+3x}4+\sin \dfrac{8\pi a-3x}4=0 \quad \Rightarrow \quad2\sin \dfrac12\left(\dfrac{8\pi a+3x}4+\dfrac{8\pi a-3x}4\right)\cdot \cos \dfrac12 \left(\dfrac{8\pi a+3x}4-\dfrac{8\pi a-3x}4\right)=0 \quad \Rightarrow\quad \sin (2\pi a)\cdot \cos \frac34 x=0 \end{aligned}\]

Последнее уравнение должно быть выполнено для всех \(x\) из области определения \(f(x)\) , следовательно, \(\sin(2\pi a)=0 \Rightarrow a=\dfrac n2, n\in\mathbb{Z}\) .

Ответ:

\(\dfrac n2, n\in\mathbb{Z}\)

Задание 3 #3069

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \ имеет 4 решения, где \(f\) – четная периодическая с периодом \(T=\dfrac{16}3\) функция, определенная на всей числовой прямой, причем \(f(x)=ax^2\) при \(0\leqslant x\leqslant \dfrac83.\)

(Задача от подписчиков)

Так как \(f(x)\) – четная функция, то ее график симметричен относительно оси ординат, следовательно, при \(-\dfrac83\leqslant x\leqslant 0\) \(f(x)=ax^2\) . Таким образом, при \(-\dfrac83\leqslant x\leqslant \dfrac83\) , а это отрезок длиной \(\dfrac{16}3\) , функция \(f(x)=ax^2\) .

1) Пусть \(a>0\) . Тогда график функции \(f(x)\) будет выглядеть следующим образом:


Тогда для того, чтобы уравнение имело 4 решения, нужно, чтобы график \(g(x)=|a+2|\cdot \sqrtx\) проходил через точку \(A\) :


Следовательно, \[\dfrac{64}9a=|a+2|\cdot \sqrt8 \quad\Leftrightarrow\quad \left[\begin{gathered}\begin{aligned} &9(a+2)=32a\\ &9(a+2)=-32a \end{aligned} \end{gathered}\right. \quad\Leftrightarrow\quad \left[\begin{gathered}\begin{aligned} &a=\dfrac{18}{23}\\ &a=-\dfrac{18}{41} \end{aligned} \end{gathered}\right.\] Так как \(a>0\) , то подходит \(a=\dfrac{18}{23}\) .

2) Пусть \(a<0\) . Тогда картинка окажется симметричной относительно начала координат:


Нужно, чтобы график \(g(x)\) прошел через точку \(B\) : \[\dfrac{64}9a=|a+2|\cdot \sqrt{-8} \quad\Leftrightarrow\quad \left[\begin{gathered}\begin{aligned} &a=\dfrac{18}{23}\\ &a=-\dfrac{18}{41} \end{aligned} \end{gathered}\right.\] Так как \(a<0\) , то подходит \(a=-\dfrac{18}{41}\) .

3) Случай, когда \(a=0\) , не подходит, так как тогда \(f(x)=0\) при всех \(x\) , \(g(x)=2\sqrtx\) и уравнение будет иметь только 1 корень.

Ответ:

\(a\in \left\{-\dfrac{18}{41};\dfrac{18}{23}\right\}\)

Задание 4 #3072

Уровень задания: Равен ЕГЭ

Найдите все значения \(a\) , при каждом из которых уравнение \

имеет хотя бы один корень.

(Задача от подписчиков)

Перепишем уравнение в виде \ и рассмотрим две функции: \(g(x)=7\sqrt{2x^2+49}\) и \(f(x)=3|x-7a|-6|x|-a^2+7a\) .
Функция \(g(x)\) является четной, имеет точку минимума \(x=0\) (причем \(g(0)=49\) ).
Функция \(f(x)\) при \(x>0\) является убывающей, а при \(x<0\) – возрастающей, следовательно, \(x=0\) – точка максимума.
Действительно, при \(x>0\) второй модуль раскроется положительно (\(|x|=x\) ), следовательно, вне зависимости от того, как раскроется первый модуль, \(f(x)\) будет равно \(kx+A\) , где \(A\) – выражение от \(a\) , а \(k\) равно либо \(-9\) , либо \(-3\) . При \(x<0\) наоборот: второй модуль раскроется отрицательно и \(f(x)=kx+A\) , где \(k\) равно либо \(3\) , либо \(9\) .
Найдем значение \(f\) в точке максимума: \

Для того, чтобы уравнение имело хотя бы одно решение, нужно, чтобы графики функций \(f\) и \(g\) имели хотя бы одну точку пересечения. Следовательно, нужно: \ \\]

Ответ:

\(a\in \{-7\}\cup\)

Задание 5 #3912

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \

имеет шесть различных решений.

Сделаем замену \((\sqrt2)^{x^3-3x^2+4}=t\) , \(t>0\) . Тогда уравнение примет вид \ Будем постепенно выписывать условия, при которых исходное уравнение будет иметь шесть решений.
Заметим, что квадратное уравнение \((*)\) может максимум иметь два решения. Любое кубическое уравнение \(Ax^3+Bx^2+Cx+D=0\) может иметь не более трех решений. Следовательно, если уравнение \((*)\) имеет два различных решения (положительных!, так как \(t\) должно быть больше нуля) \(t_1\) и \(t_2\) , то, сделав обратную замену, мы получим: \[\left[\begin{gathered}\begin{aligned} &(\sqrt2)^{x^3-3x^2+4}=t_1\\ &(\sqrt2)^{x^3-3x^2+4}=t_2\end{aligned}\end{gathered}\right.\] Так как любое положительное число можно представить как \(\sqrt2\) в какой-то степени, например, \(t_1=(\sqrt2)^{\log_{\sqrt2} t_1}\) , то первое уравнение совокупности перепишется в виде \ Как мы уже говорили, любое кубическое уравнение имеет не более трех решений, следовательно, каждое уравнение из совокупности будет иметь не более трех решений. А значит и вся совокупность будет иметь не более шести решений.
Значит, чтобы исходное уравнение имело шесть решений, квадратное уравнение \((*)\) должно иметь два различных решения, а каждое полученное кубическое уравнение (из совокупности) должно иметь три различных решения (причем ни одно решение одного уравнения не должно совпадать с каким-либо решением второго!)
Очевидно, что если квадратное уравнение \((*)\) будет иметь одно решение, то мы никак не получим шесть решений у исходного уравнения.

Таким образом, план решения становится ясен. Давайте по пунктам выпишем условия, которые должны выполняться.

1) Чтобы уравнение \((*)\) имело два различных решения, его дискриминант должен быть положительным: \

2) Также нужно, чтобы оба корня были положительными (так как \(t>0\) ). Если произведение двух корней положительное и сумма их положительная, то и сами корни будут положительными. Следовательно, нужно: \[\begin{cases} 12-a>0\\-(a-10)>0\end{cases}\quad\Leftrightarrow\quad a<10\]

Таким образом, мы уже обеспечили себе два различных положительных корня \(t_1\) и \(t_2\) .

3) Давайте посмотрим на такое уравнение \ При каких \(t\) оно будет иметь три различных решения?
Рассмотрим функцию \(f(x)=x^3-3x^2+4\) .
Можно разложить на множители: \ Следовательно, ее нули: \(x=-1;2\) .
Если найти производную \(f"(x)=3x^2-6x\) , то мы получим две точки экстремума \(x_{max}=0, x_{min}=2\) .
Следовательно, график выглядит так:


Мы видим, что любая горизонтальная прямая \(y=k\) , где \(0\(x^3-3x^2+4=\log_{\sqrt2} t\) имело три различных решения, нужно, чтобы \(0<\log_ {\sqrt2}t<4\) .
Таким образом, нужно: \[\begin{cases} 0<\log_{\sqrt2}t_1<4\\ 0<\log_{\sqrt2}t_2<4\end{cases}\qquad (**)\] Давайте также сразу заметим, что если числа \(t_1\) и \(t_2\) различны, то и числа \(\log_{\sqrt2}t_1\) и \(\log_{\sqrt2}t_2\) будут различны, значит, и уравнения \(x^3-3x^2+4=\log_{\sqrt2} t_1\) и \(x^3-3x^2+4=\log_{\sqrt2} t_2\) будут иметь несовпадающие между собой корни.
Систему \((**)\) можно переписать так: \[\begin{cases} 1

Таким образом, мы определили, что оба корня уравнения \((*)\) должны лежать в интервале \((1;4)\) . Как записать это условие?
В явном виде выписывать корни мы не будем.
Рассмотрим функцию \(g(t)=t^2+(a-10)t+12-a\) . Ее график – парабола с ветвями вверх, которая имеет две точки пересечения с осью абсцисс (это условие мы записали в пункте 1)). Как должен выглядеть ее график, чтобы точки пересечения с осью абсцисс были в интервале \((1;4)\) ? Так:


Во-первых, значения \(g(1)\) и \(g(4)\) функции в точках \(1\) и \(4\) должны быть положительными, во-вторых, вершина параболы \(t_0\) должна также находиться в интервале \((1;4)\) . Следовательно, можно записать систему: \[\begin{cases} 1+a-10+12-a>0\\ 4^2+(a-10)\cdot 4+12-a>0\\ 1<\dfrac{-(a-10)}2<4\end{cases}\quad\Leftrightarrow\quad 4\(a\) всегда имеет как минимум один корень \(x=0\) . Значит, для выполнения условия задачи нужно, чтобы уравнение \

имело четыре различных корня, отличных от нуля, представляющих вместе с \(x=0\) арифметическую прогрессию.

Заметим, что функция \(y=25x^4+25(a-1)x^2-4(a-7)\) является четной, значит, если \(x_0\) является корнем уравнения \((*)\) , то и \(-x_0\) будет являться его корнем. Тогда необходимо, чтобы корнями этого уравнения были упорядоченные по возрастанию числа: \(-2d, -d, d, 2d\) (тогда \(d>0\) ). Именно тогда данные пять чисел будут образовывать арифметическую прогрессию (с разностью \(d\) ).

Чтобы этими корнями являлись числа \(-2d, -d, d, 2d\) , нужно, чтобы числа \(d^{\,2}, 4d^{\,2}\) являлись корнями уравнения \(25t^2+25(a-1)t-4(a-7)=0\) . Тогда по теореме Виета:

Перепишем уравнение в виде \ и рассмотрим две функции: \(g(x)=20a-a^2-2^{x^2+2}\) и \(f(x)=13|x|-2|5x+12a|\) .
Функция \(g(x)\) имеет точку максимума \(x=0\) (причем \(g_{\text{верш}}=g(0)=-a^2+20a-4\) ):
\(g"(x)=-2^{x^2+2}\cdot \ln 2\cdot 2x\) . Ноль производной: \(x=0\) . При \(x<0\) имеем: \(g">0\) , при \(x>0\) : \(g"<0\) .
Функция \(f(x)\) при \(x>0\) является возрастающей, а при \(x<0\) – убывающей, следовательно, \(x=0\) – точка минимума.
Действительно, при \(x>0\) первый модуль раскроется положительно (\(|x|=x\) ), следовательно, вне зависимости от того, как раскроется второй модуль, \(f(x)\) будет равно \(kx+A\) , где \(A\) – выражение от \(a\) , а \(k\) равно либо \(13-10=3\) , либо \(13+10=23\) . При \(x<0\) наоборот: первый модуль раскроется отрицательно и \(f(x)=kx+A\) , где \(k\) равно либо \(-3\) , либо \(-23\) .
Найдем значение \(f\) в точке минимума: \

Для того, чтобы уравнение имело хотя бы одно решение, нужно, чтобы графики функций \(f\) и \(g\) имели хотя бы одну точку пересечения. Следовательно, нужно: \ Решая данную совокупность систем, получим ответ: \\]

Ответ:

\(a\in \{-2\}\cup\)

Определение 1. Функцияназываетсячетной (нечетной ), если вместе с каждым значением переменной
значение –х также принадлежит
и выполняется равенство

Таким образом, функция может быть четной или нечетной только тогда, когда ее область определения симметрична относительно начала координат на числовой прямой (числа х и –х одновременно принадлежат
). Например, функция
не является четной и нечетной, так как ее область определения
не симметрична относительно начала координат.

Функция
четная, так как
симметрична относительно начала координат и.

Функция
нечетная, так как
и
.

Функция
не является четной и нечетной, так как хотя
и симметрична относительно начала координат, равенства (11.1) не выполняются. Например,.

График четной функции симметричен относительно оси Оу , так как если точка

тоже принадлежит графику. График нечетной функции симметричен относительно начала координат, так как если
принадлежит графику, то и точка
тоже принадлежит графику.

При доказательстве четности или нечетности функции бывают полезны следующие утверждения.

Теорема 1. а) Сумма двух четных (нечетных) функций есть функция четная (нечетная).

б) Произведение двух четных (нечетных) функций есть функция четная.

в) Произведение четной и нечетной функций есть функция нечетная.

г) Если f – четная функция на множествеХ , а функцияg определена на множестве
, то функция
– четная.

д) Если f – нечетная функция на множествеХ , а функцияg определена на множестве
и четная (нечетная), то функция
– четная (нечетная).

Доказательство . Докажем, например, б) и г).

б) Пусть
и
– четные функции. Тогда, поэтому. Аналогично рассматривается случай нечетных функций
и
.

г) Пусть f – четная функция. Тогда.

Остальные утверждения теоремы доказываются аналогично. Теорема доказана.

Теорема 2. Любую функцию
, заданную на множествеХ , симметричном относительно начала координат, можно представить в виде суммы четной и нечетной функций.

Доказательство . Функцию
можно записать в виде

.

Функция
– четная, так как
, а функция
– нечетная, поскольку. Таким образом,
, где
– четная, а
– нечетная функции. Теорема доказана.

Определение 2. Функция
называетсяпериодической , если существует число
, такое, что при любом
числа
и
также принадлежат области определения
и выполняются равенства

Такое число T называетсяпериодом функции
.

Из определения 1 следует, что если Т – период функции
, то и число –Т тоже является периодом функции
(так как при заменеТ на –Т равенство сохраняется). С помощью метода математической индукции можно показать, что еслиТ – период функцииf , то и
, тоже является периодом. Отсюда следует, что если функция имеет период, то она имеет бесконечно много периодов.

Определение 3. Наименьший из положительных периодов функции называется ееосновным периодом.

Теорема 3. ЕслиТ – основной период функцииf , то остальные периоды кратны ему.

Доказательство . Предположим противное, то есть что существует периодфункцииf (>0), не кратныйТ . Тогда, разделивнаТ с остатком, получим
, где
. Поэтому

то есть – период функцииf , причем
, а это противоречит тому, чтоТ – основной период функцииf . Из полученного противоречия следует утверждение теоремы. Теорема доказана.

Хорошо известно, что тригонометрические функции являются периодическими. Основной период
и
равен
,
и
. Найдем период функции
. Пусть
- период этой функции. Тогда

(так как
.

илиилиили
.

Значение T , определяемое из первого равенства, не может быть периодом, так как зависит отх , т.е. является функцией отх , а не постоянным числом. Период определяется из второго равенства:
. Периодов бесконечно много, при
наименьший положительный период получается при
:
. Это – основной период функции
.

Примером более сложной периодической функции является функция Дирихле

Заметим, что если T – рациональное число, то
и
являются рациональными числами при рациональномх и иррациональными при иррациональномх . Поэтому

при любом рациональном числе T . Следовательно, любое рациональное числоT является периодом функции Дирихле. Ясно, что основного периода у этой функции нет, так как есть положительные рациональные числа, сколь угодно близкие к нулю (например, рациональное числоможно сделать выборомn сколь угодно близким к нулю).

Теорема 4. Если функцияf задана на множествеХ и имеет периодТ , а функцияg задана на множестве
, то сложная функция
тоже имеет периодТ .

Доказательство . Имеем, поэтому

то есть утверждение теоремы доказано.

Например, так как cos x имеет период
, то и функции
имеют период
.

Определение 4. Функции, не являющиеся периодическими, называютсянепериодическими .

. Для этого воспользуйтесь миллиметровкой или графическим калькулятором. Выберите несколько любых числовых значений независимой переменной x {\displaystyle x} и подставьте их в функцию, чтобы вычислить значения зависимой переменной y {\displaystyle y} . Найденные координаты точек нанесите на координатную плоскость, а затем соедините эти точки, чтобы построить график функции.
  • В функцию подставьте положительные числовые значения x {\displaystyle x} и соответствующие отрицательные числовые значения. Например, дана функция f (x) = 2 x 2 + 1 {\displaystyle f(x)=2x^{2}+1} . Подставьте в нее следующие значения x {\displaystyle x} :

Проверьте, симметричен ли график функции относительно оси Y. Под симметрией подразумевается зеркальное отображение графика относительно оси ординат. Если часть графика справа от оси Y (положительные значения независимой переменной) совпадает с частью графика слева от оси Y (отрицательные значения независимой переменной), график симметричен относительно оси Y. Если функция симметрична относительно оси ординат, такая функция четная.

Проверьте, симметричен ли график функции относительно начала координат. Начало координат – это точка с координатами (0,0). Симметрия относительно начала координат означает, что положительному значению y {\displaystyle y} (при положительном значении x {\displaystyle x} ) соответствует отрицательное значение y {\displaystyle y} (при отрицательном значении x {\displaystyle x} ), и наоборот. Нечетные функции обладают симметрией относительно начала координат.

  • Проверьте, имеет ли график функции какую-нибудь симметрию. Последний вид функции – это функция, график которой не имеет симметрии, то есть зеркальное отображение отсутствует как относительно оси ординат, так и относительно начала координат. Например, дана функция .

    • В функцию подставьте несколько положительных и соответствующих отрицательных значений x {\displaystyle x} :
    • Согласно полученным результатам, симметрии нет. Значения y {\displaystyle y} для противоположных значений x {\displaystyle x} не совпадают и не являются противоположными. Таким образом, функция является ни четной, ни нечетной.
    • Обратите внимание, что функцию f (x) = x 2 + 2 x + 1 {\displaystyle f(x)=x^{2}+2x+1} можно записать так: f (x) = (x + 1) 2 {\displaystyle f(x)=(x+1)^{2}} . Будучи записанной в такой форме, функция кажется четной, потому что присутствует четный показатель степени. Но этот пример доказывает, что вид функции нельзя быстро определить, если независимая переменная заключена в скобки. В этом случае нужно раскрыть скобки и проанализировать полученные показатели степени.
  • Вам также будет интересно:

    Презентация:
    Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
    Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
    Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
    Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
    Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
    Лазанья с говядиной и тортильями
    Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
    Чечевица с рисом: рецепты и особенности приготовления
    Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...