Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Квадратный корень из произведения и дроби. Как найти квадратный корень числа вручную Квадратные корни из произведения дроби

Слайд 2

Цели урока:

Повторить определение арифметического квадратного корня. Ввести и доказать теорему о квадратном корне из произведения. Научиться находить . Проверить знания и умения с помощью самостоятельной работы.

Слайд 3

Квадратный корень из произведения

План урока: Актуализация знаний. Изучение нового материала. Закрепление формулы на примерах. Самостоятельная работа. Подведение итогов. Задание на дом.

Слайд 4

Здравствуйте, ребята!

Повторим: 2. Что называется арифметическим квадратным корнем из числа 3. При каком значении выражение имеет смысл? 1. Как называется выражение

Слайд 5

Найдите:

1) 2) 3) 7 или или 7

Слайд 6

Сегодня мы познакомимся с одним из свойств арифметического квадратного корня. Введем и докажем теорему о квадратном корне из произведения, рассмотрим примеры её применения. Затем Вам будут предложены задания для самопроверки. Желаю удачи!

Слайд 7

Попробуем решить

Рассмотрим арифметический корень Найдите значение выражения: Значит, Итак, корень из произведения двух чисел равен произведению корней из этих чисел.

Слайд 8

Корень из произведения неотрицательных множителей равен произведению корней из этих множителей. Если то Теорема

Слайд 9

Квадратный корень из произведения

Доказательство: значит, - имеют смысл. 4. Вывод: (т.к. произведение двух неотрицательных чисел неотрицательно)‏ 5. Итак,

Слайд 10

Мы рассмотрели доказательство теоремы об извлечении квадратного корня из произведения. Перейдём к практической работе. Сейчас я вам покажу как применяется эта формула при решении примеров. Решайте вместе со мной.

Слайд 11

Вычислите значение квадратного корня, используя теорему о корне из произведения: Решаем примеры:

Слайд 12

Решаем примеры:

2. Найдите значение выражения:

Слайд 13

Быстрый счёт

А я догадался, как можно использовать эту формулу для быстрых вычислений. Смотри и учись.

Слайд 14

Вариант 1 Вариант 2 Предлагаю вам примеры для самостоятельного решения.

До появления калькуляторов студенты и преподаватели вычисляли квадратные корни вручную. Существует несколько способов вычисления квадратного корня числа вручную. Некоторые из них предлагают только приблизительное решение, другие дают точный ответ.

Шаги

Разложение на простые множители

    Разложите подкоренное число на множители, которые являются квадратными числами. В зависимости от подкоренного числа, вы получите приблизительный или точный ответ. Квадратные числа – числа, из которых можно извлечь целый квадратный корень. Множители – числа, которые при перемножении дают исходное число. Например, множителями числа 8 являются 2 и 4, так как 2 х 4 = 8, числа 25, 36, 49 являются квадратными числами, так как √25 = 5, √36 = 6, √49 = 7. Квадратные множители – это множители, которые являются квадратными числами. Сначала попытайтесь разложить подкоренное число на квадратные множители.

    • Например, вычислите квадратный корень из 400 (вручную). Сначала попытайтесь разложить 400 на квадратные множители. 400 кратно 100, то есть делится на 25 – это квадратное число. Разделив 400 на 25, вы получите 16. Число 16 также является квадратным числом. Таким образом, 400 можно разложить на квадратные множители 25 и 16, то есть 25 х 16 = 400.
    • Записать это можно следующим образом: √400 = √(25 х 16).
  1. Квадратные корень из произведения некоторых членов равен произведению квадратных корней из каждого члена, то есть √(а х b) = √a x √b. Воспользуйтесь этим правилом и извлеките квадратный корень из каждого квадратного множителя и перемножьте полученные результаты, чтобы найти ответ.

    • В нашем примере извлеките корень из 25 и из 16.
      • √(25 х 16)
      • √25 х √16
      • 5 х 4 = 20
  2. Если подкоренное число не раскладывается на два квадратных множителя (а так происходит в большинстве случаев), вы не сможете найти точный ответ в виде целого числа. Но вы можете упростить задачу, разложив подкоренное число на квадратный множитель и обыкновенный множитель (число, из которого целый квадратный корень извлечь нельзя). Затем вы извлечете квадратный корень из квадратного множителя и будете извлекать корень из обыкновенного множителя.

    • Например, вычислите квадратный корень из числа 147. Число 147 нельзя разложить на два квадратных множителя, но его можно разложить на следующие множители: 49 и 3. Решите задачу следующим образом:
      • = √(49 х 3)
      • = √49 х √3
      • = 7√3
  3. Если нужно, оцените значение корня. Теперь можно оценить значение корня (найти приблизительное значение), сравнив его со значениями корней квадратных чисел, находящихся ближе всего (с обеих сторон на числовой прямой) к подкоренному числу. Вы получите значение корня в виде десятичной дроби, которую необходимо умножить на число, стоящее за знаком корня.

    • Вернемся к нашему примеру. Подкоренное число 3. Ближайшими к нему квадратными числами будут числа 1 (√1 = 1) и 4 (√4 = 2). Таким образом, значение √3 расположено между 1 и 2. Та как значение √3, вероятно, ближе к 2, чем к 1, то наша оценка: √3 = 1,7. Умножаем это значение на число у знака корня: 7 х 1,7 = 11,9. Если вы сделаете расчеты на калькуляторе, то получите 12,13, что довольно близко к нашему ответу.
      • Этот метод также работает с большими числами. Например, рассмотрим √35. Подкоренное число 35. Ближайшими к нему квадратными числами будут числа 25 (√25 = 5) и 36 (√36 = 6). Таким образом, значение √35 расположено между 5 и 6. Так как значение √35 намного ближе к 6, чем к 5 (потому что 35 всего на 1 меньше 36), то можно заявить, что √35 немного меньше 6. Проверка на калькуляторе дает нам ответ 5,92 - мы были правы.
  4. Еще один способ – разложите подкоренное число на простые множители . Простые множители – числа, которые делятся только на 1 и самих себя. Запишите простые множители в ряд и найдите пары одинаковых множителей. Такие множители можно вынести за знак корня.

    • Например, вычислите квадратный корень из 45. Раскладываем подкоренное число на простые множители: 45 = 9 х 5, а 9 = 3 х 3. Таким образом, √45 = √(3 х 3 х 5). 3 можно вынести за знак корня: √45 = 3√5. Теперь можно оценить √5.
    • Рассмотрим другой пример: √88.
      • = √(2 х 44)
      • = √ (2 х 4 х 11)
      • = √ (2 х 2 х 2 х 11). Вы получили три множителя 2; возьмите пару из них и вынесите за знак корня.
      • = 2√(2 х 11) = 2√2 х √11. Теперь можно оценить √2 и √11 и найти приблизительный ответ.

    Вычисление квадратного корня вручную

    При помощи деления в столбик

    1. Этот метод включает процесс, аналогичный делению в столбик, и дает точный ответ. Сначала проведите вертикальную линию, делящую лист на две половины, а затем справа и немного ниже верхнего края листа к вертикальной линии пририсуйте горизонтальную линию. Теперь разделите подкоренное число на пары чисел, начиная с дробной части после запятой. Так, число 79520789182,47897 записывается как "7 95 20 78 91 82, 47 89 70".

      • Для примера вычислим квадратный корень числа 780,14. Нарисуйте две линии (как показано на рисунке) и слева сверху напишите данное число в виде "7 80, 14". Это нормально, что первая слева цифра является непарной цифрой. Ответ (корень из данного числа) будете записывать справа сверху.
    2. Для первой слева пары чисел (или одного числа) найдите наибольшее целое число n, квадрат которого меньше или равен рассматриваемой паре чисел (или одного числа). Другими словами, найдите квадратное число, которое расположено ближе всего к первой слева паре чисел (или одному числу), но меньше ее, и извлеките квадратный корень из этого квадратного числа; вы получите число n. Напишите найденное n сверху справа, а квадрат n запишите снизу справа.

      • В нашем случае, первым слева числом будет число 7. Далее, 4 < 7, то есть 2 2 < 7 и n = 2. Напишите 2 сверху справа - это первая цифра в искомом квадратном корне. Напишите 2×2=4 справа снизу; вам понадобится это число для последующих вычислений.
    3. Вычтите квадрат числа n, которое вы только что нашли, из первой слева пары чисел (или одного числа). Результат вычисления запишите под вычитаемым (квадратом числа n).

      • В нашем примере вычтите 4 из 7 и получите 3.
    4. Снесите вторую пару чисел и запишите ее около значения, полученного в предыдущем шаге. Затем удвойте число сверху справа и запишите полученный результат снизу справа с добавлением "_×_=".

      • В нашем примере второй парой чисел является "80". Запишите "80" после 3. Затем, удвоенное число сверху справа дает 4. Запишите "4_×_=" снизу справа.
    5. Заполните прочерки справа.

      • В нашем случае, если вместо прочерков поставить число 8, то 48 х 8 = 384, что больше 380. Поэтому 8 - слишком большое число, а вот 7 подойдет. Напишите 7 вместо прочерков и получите: 47 х 7 = 329. Запишите 7 сверху справа - это вторая цифра в искомом квадратном корне числа 780,14.
    6. Вычтите полученное число из текущего числа слева. Запишите результат из предыдущего шага под текущим числом слева, найдите разницу и запишите ее под вычитаемым.

      • В нашем примере, вычтите 329 из 380, что равно 51.
    7. Повторите шаг 4. Если сносимой парой чисел является дробная часть исходного числа, то поставьте разделитель (запятую) целой и дробной частей в искомом квадратном корне сверху справа. Слева снесите вниз следующую пару чисел. Удвойте число сверху справа и запишите полученный результат снизу справа с добавлением "_×_=".

      • В нашем примере следующей сносимой парой чисел будет дробная часть числа 780.14, поэтому поставьте разделитель целой и дробной частей в искомом квадратном корне сверху справа. Снесите 14 и запишите снизу слева. Удвоенным числом сверху справа (27) будет 54, поэтому напишите "54_×_=" снизу справа.
    8. Повторите шаги 5 и 6. Найдите такое наибольшее число на место прочерков справа (вместо прочерков нужно подставить одно и тоже число), чтобы результат умножения был меньше или равен текущему числу слева.

      • В нашем примере 549 х 9 = 4941, что меньше текущего числа слева (5114). Напишите 9 сверху справа и вычтите результат умножения из текущего числа слева: 5114 - 4941 = 173.
    9. Если для квадратного корня вам необходимо найти больше знаков после запятой, напишите пару нулей у текущего числа слева и повторяйте шаги 4, 5 и 6. Повторяйте шаги, до тех пор пока не получите нужную вам точность ответа (число знаков после запятой).

    Понимание процесса

      Для усвоения данного метода представьте число, квадратный корень которого необходимо найти, как площадь квадрата S. В этом случае вы будете искать длину стороны L такого квадрата. Вычисляем такое значение L, при котором L² = S.

      Задайте букву для каждой цифры в ответе. Обозначим через A первую цифру в значении L (искомый квадратный корень). B будет второй цифрой, C - третьей и так далее.

      Задайте букву для каждой пары первых цифр. Обозначим через S a первую пару цифр в значении S, через S b - вторую пару цифр и так далее.

      Уясните связь данного метода с делением в столбик. Как и в операции деления, где каждый раз нас интересует только одна следующая цифра делимого числа, при вычислении квадратного корня мы последовательно работаем с парой цифр (для получения одной следующей цифры в значении квадратного корня).

    1. Рассмотрим первую пару цифр Sa числа S (Sa = 7 в нашем примере) и найдем ее квадратный корень. В этом случае первой цифрой A искомого значения квадратного корня будет такая цифра, квадрат которой меньше или равен S a (то есть ищем такое A, при котором выполняется неравенство A² ≤ Sa < (A+1)²). В нашем примере, S1 = 7, и 2² ≤ 7 < 3²; таким образом A = 2.

      • Допустим, что нужно разделить 88962 на 7; здесь первый шаг будет аналогичным: рассматриваем первую цифру делимого числа 88962 (8) и подбираем такое наибольшее число, которое при умножении на 7 дает значение меньшее или равное 8. То есть ищем такое число d, при котором верно неравенство: 7×d ≤ 8 < 7×(d+1). В этом случае d будет равно 1.

Приветствую, котаны! В прошлый раз мы подробно разобрали, что такое корни (если не помните, рекомендую почитать). Главный вывод того урока: существует лишь одно универсальное определение корней, которое вам и нужно знать. Остальное — брехня и пустая трата времени.

Сегодня мы идём дальше. Будем учиться умножать корни, изучим некоторые проблемы, связанные с умножением (если эти проблемы не решить, то на экзамене они могут стать фатальными) и как следует потренируемся. Поэтому запасайтесь попкорном, устраивайтесь поудобнее — и мы начинаем.:)

Вы ведь тоже ещё не вкурили?

Урок получился довольно большим, поэтому я разделил его на две части:

  1. Сначала мы разберём правила умножения. Кэп как бы намекает: это когда есть два корня, между ними стоит знак «умножить» — и мы хотим что-то с этим сделать.
  2. Затем разберём обратную ситуацию: есть один большой корень, а нам приспичило представить его в виде произведения двух корней попроще. С какого перепугу это бывает нужно — вопрос отдельный. Мы разберём лишь алгоритм.

Тем, кому не терпится сразу перейти ко второй части — милости прошу. С остальными начнём по порядку.

Основное правило умножения

Начнём с самого простого — классических квадратных корней. Тех самых, которые обозначаются $\sqrt{a}$ и $\sqrt{b}$. Для них всё вообще очевидно:

Правило умножения. Чтобы умножить один квадратный корень на другой, нужно просто перемножить их подкоренные выражения, а результат записать под общим радикалом:

\[\sqrt{a}\cdot \sqrt{b}=\sqrt{a\cdot b}\]

Никаких дополнительных ограничений на числа, стоящие справа или слева, не накладывается: если корни-множители существуют, то и произведение тоже существует.

Примеры. Рассмотрим сразу четыре примера с числами:

\[\begin{align} & \sqrt{25}\cdot \sqrt{4}=\sqrt{25\cdot 4}=\sqrt{100}=10; \\ & \sqrt{32}\cdot \sqrt{2}=\sqrt{32\cdot 2}=\sqrt{64}=8; \\ & \sqrt{54}\cdot \sqrt{6}=\sqrt{54\cdot 6}=\sqrt{324}=18; \\ & \sqrt{\frac{3}{17}}\cdot \sqrt{\frac{17}{27}}=\sqrt{\frac{3}{17}\cdot \frac{17}{27}}=\sqrt{\frac{1}{9}}=\frac{1}{3}. \\ \end{align}\]

Как видите, основной смысл этого правила — упрощение иррациональных выражений. И если в первом примере мы бы и сами извлекли корни из 25 и 4 без всяких новых правил, то дальше начинается жесть: $\sqrt{32}$ и $\sqrt{2}$ сами по себе не считаются, но их произведение оказывается точным квадратом, поэтому корень из него равен рациональному числу .

Отдельно хотел бы отметить последнюю строчку. Там оба подкоренных выражения представляют собой дроби. Благодаря произведению многие множители сокращаются, а всё выражение превращается в адекватное число.

Конечно, не всегда всё будет так красиво. Иногда под корнями будет стоять полная лажа — непонятно, что с ней делать и как преобразовывать после умножения. Чуть позже, когда начнёте изучать иррациональные уравнения и неравенства, там вообще будут всякие переменные и функции. И очень часто составители задач как раз и рассчитывают на то, что вы обнаружите какие-то сокращающиеся слагаемые или множители, после чего задача многократно упростится.

Кроме того, совсем необязательно перемножать именно два корня. Можно умножить сразу три, четыре — да хоть десять! Правило от этого не поменяется. Взгляните:

\[\begin{align} & \sqrt{2}\cdot \sqrt{3}\cdot \sqrt{6}=\sqrt{2\cdot 3\cdot 6}=\sqrt{36}=6; \\ & \sqrt{5}\cdot \sqrt{2}\cdot \sqrt{0,001}=\sqrt{5\cdot 2\cdot 0,001}= \\ & =\sqrt{10\cdot \frac{1}{1000}}=\sqrt{\frac{1}{100}}=\frac{1}{10}. \\ \end{align}\]

И опять небольшое замечание по второму примеру. Как видите, в третьем множителе под корнем стоит десятичная дробь — в процессе вычислений мы заменяем её обычной, после чего всё легко сокращается. Так вот: очень рекомендую избавляться от десятичных дробей в любых иррациональных выражениях (т.е. содержащих хотя бы один значок радикала). В будущем это сэкономит вам кучу времени и нервов.

Но это было лирическое отступление. Теперь рассмотрим более общий случай — когда в показателе корня стоит произвольное число $n$, а не только «классическая» двойка.

Случай произвольного показателя

Итак, с квадратными корнями разобрались. А что делать с кубическими? Или вообще с корнями произвольной степени $n$? Да всё то же самое. Правило остаётся прежним:

Чтобы перемножить два корня степени $n$, достаточно перемножить их подкоренные выражения, после чего результат записать под одним радикалом.

В общем, ничего сложного. Разве что объём вычислений может оказаться больше. Разберём парочку примеров:

Примеры. Вычислить произведения:

\[\begin{align} & \sqrt{20}\cdot \sqrt{\frac{125}{4}}=\sqrt{20\cdot \frac{125}{4}}=\sqrt{625}=5; \\ & \sqrt{\frac{16}{625}}\cdot \sqrt{0,16}=\sqrt{\frac{16}{625}\cdot \frac{16}{100}}=\sqrt{\frac{64}{{{25}^{2}}\cdot 25}}= \\ & =\sqrt{\frac{{{4}^{3}}}{{{25}^{3}}}}=\sqrt{{{\left(\frac{4}{25} \right)}^{3}}}=\frac{4}{25}. \\ \end{align}\]

И вновь внимание второе выражение. Мы перемножаем кубические корни, избавляемся от десятичной дроби и в итоге получаем в знаменателе произведение чисел 625 и 25. Это довольно большое число — лично я с ходу не посчитаю, чему оно равно.

Поэтому мы просто выделили точный куб в числителе и знаменателе, а затем воспользовались одним из ключевых свойств (или, если угодно — определением) корня $n$-й степени:

\[\begin{align} & \sqrt{{{a}^{2n+1}}}=a; \\ & \sqrt{{{a}^{2n}}}=\left| a \right|. \\ \end{align}\]

Подобные «махинации» могут здорово сэкономить вам время на экзамене или контрольной работе, поэтому запомните:

Не спешите перемножать числа в подкоренном выражении. Сначала проверьте: вдруг там «зашифрована» точная степень какого-либо выражения?

При всей очевидности этого замечания должен признать, что большинство неподготовленных учеников в упор не видят точные степени. Вместо этого они перемножают всё напролом, а затем удивляются: почему это получились такие зверские числа?:)

Впрочем, всё это детский лепет по сравнению с тем, что мы изучим сейчас.

Умножение корней с разными показателями

Ну хорошо, теперь мы умеем перемножать корни с одинаковыми показателями. А что, если показатели разные? Скажем, как умножить обычный $\sqrt{2}$ на какую-нибудь хрень типа $\sqrt{23}$? Можно ли вообще это делать?

Да конечно можно. Всё делается вот по этой формуле:

Правило умножения корней. Чтобы умножить $\sqrt[n]{a}$ на $\sqrt[p]{b}$, достаточно выполнить вот такое преобразование:

\[\sqrt[n]{a}\cdot \sqrt[p]{b}=\sqrt{{{a}^{p}}\cdot {{b}^{n}}}\]

Однако эта формула работает только при условии, что подкоренные выражения неотрицательны . Это очень важное замечание, к которому мы вернёмся чуть позже.

А пока рассмотрим парочку примеров:

\[\begin{align} & \sqrt{3}\cdot \sqrt{2}=\sqrt{{{3}^{4}}\cdot {{2}^{3}}}=\sqrt{81\cdot 8}=\sqrt{648}; \\ & \sqrt{2}\cdot \sqrt{7}=\sqrt{{{2}^{5}}\cdot {{7}^{2}}}=\sqrt{32\cdot 49}=\sqrt{1568}; \\ & \sqrt{5}\cdot \sqrt{3}=\sqrt{{{5}^{4}}\cdot {{3}^{2}}}=\sqrt{625\cdot 9}=\sqrt{5625}. \\ \end{align}\]

Как видите, ничего сложного. Теперь давайте разберёмся, откуда взялось требование неотрицательности, и что будет, если мы его нарушим.:)


Умножать корни несложно

Почему подкоренные выражения должны быть неотрицательными?

Конечно, можно уподобиться школьным учителям и с умным видом процитировать учебник:

Требование неотрицательности связано с разными определениями корней чётной и нечётной степени (соответственно, области определения у них тоже разные).

Ну что, стало понятнее? Лично я, когда читал этот бред в 8-м классе, понял для себя примерно следующее: «Требование неотрицательности связано с *#&^@(*#@^#)~%» — короче, я нихрена в тот раз не понял.:)

Поэтому сейчас объясню всё по-нормальному.

Сначала выясним, откуда вообще берётся формула умножения, приведённая выше. Для этого напомню одно важное свойство корня:

\[\sqrt[n]{a}=\sqrt{{{a}^{k}}}\]

Другими словами, мы можем спокойно возводить подкоренное выражение в любую натуральную степень $k$ — при этом показатель корня придётся умножить на эту же степень. Следовательно, мы легко сведём любые корни к общему показателю, после чего перемножим. Отсюда и берётся формула умножения:

\[\sqrt[n]{a}\cdot \sqrt[p]{b}=\sqrt{{{a}^{p}}}\cdot \sqrt{{{b}^{n}}}=\sqrt{{{a}^{p}}\cdot {{b}^{n}}}\]

Но есть одна проблема, которая резко ограничивает применение всех этих формул. Рассмотрим вот такое число:

Согласно только что приведённой формуле мы можем добавить любую степень. Попробуем добавить $k=2$:

\[\sqrt{-5}=\sqrt{{{\left(-5 \right)}^{2}}}=\sqrt{{{5}^{2}}}\]

Минус мы убрали как раз потому, что квадрат сжигает минус (как и любая другая чётная степень). А теперь выполним обратное преобразование: «сократим» двойку в показателе и степени. Ведь любое равенство можно читать как слева-направо, так и справа-налево:

\[\begin{align} & \sqrt[n]{a}=\sqrt{{{a}^{k}}}\Rightarrow \sqrt{{{a}^{k}}}=\sqrt[n]{a}; \\ & \sqrt{{{a}^{k}}}=\sqrt[n]{a}\Rightarrow \sqrt{{{5}^{2}}}=\sqrt{{{5}^{2}}}=\sqrt{5}. \\ \end{align}\]

Но тогда получается какая-то хрень:

\[\sqrt{-5}=\sqrt{5}\]

Этого не может быть, потому что $\sqrt{-5} \lt 0$, а $\sqrt{5} \gt 0$. Значит, для чётных степеней и отрицательных чисел наша формула уже не работает. После чего у нас есть два варианта:

  1. Убиться об стену констатировать, что математика — это дурацкая наука, где «есть какие-то правила, но это неточно»;
  2. Ввести дополнительные ограничения, при которых формула станет рабочей на 100%.

В первом варианте нам придётся постоянно вылавливать «неработающие» случаи — это трудно, долго и вообще фу. Поэтому математики предпочли второй вариант.:)

Но не переживайте! На практике это ограничение никак не влияет на вычисления, потому что все описанные проблемы касаются лишь корней нечётной степени, а из них можно выносить минусы.

Поэтому сформулируем ещё одно правило, которое распространяется вообще на все действия с корнями:

Прежде чем перемножать корни, сделайте так, чтобы подкоренные выражения были неотрицательны.

Пример. В числе $\sqrt{-5}$ можно вынести минус из-под знака корня — тогда всё будет норм:

\[\begin{align} & \sqrt{-5}=-\sqrt{5} \lt 0\Rightarrow \\ & \sqrt{-5}=-\sqrt{{{5}^{2}}}=-\sqrt{25}=-\sqrt{{{5}^{2}}}=-\sqrt{5} \lt 0 \\ \end{align}\]

Чувствуете разницу? Если оставить минус под корнем, то при возведении подкоренного выражения в квадрат он исчезнет, и начнётся хрень. А если сначала вынести минус, то можно хоть до посинения возводить/убирать квадрат — число останется отрицательным.:)

Таким образом, самый правильный и самый надёжный способ умножения корней следующий:

  1. Убрать все минусы из-под радикалов. Минусы бывают только в корнях нечётной кратности — их можно поставить перед корнем и при необходимости сократить (например, если этих минусов окажется два).
  2. Выполнить умножение согласно правилам, рассмотренным выше в сегодняшнем уроке. Если показатели корней одинаковые, просто перемножаем подкоренные выражения. А если разные — используем злобную формулу \[\sqrt[n]{a}\cdot \sqrt[p]{b}=\sqrt{{{a}^{p}}\cdot {{b}^{n}}}\].
  3. 3.Наслаждаемся результатом и хорошими оценками.:)

Ну что? Потренируемся?

Пример 1. Упростите выражение:

\[\begin{align} & \sqrt{48}\cdot \sqrt{-\frac{4}{3}}=\sqrt{48}\cdot \left(-\sqrt{\frac{4}{3}} \right)=-\sqrt{48}\cdot \sqrt{\frac{4}{3}}= \\ & =-\sqrt{48\cdot \frac{4}{3}}=-\sqrt{64}=-4; \end{align}\]

Это самое простой вариант: показатели корней одинаковы и нечётны, проблема лишь в минусе у второго множителя. Выносим этот минус нафиг, после чего всё легко считается.

Пример 2. Упростите выражение:

\[\begin{align} & \sqrt{32}\cdot \sqrt{4}=\sqrt{{{2}^{5}}}\cdot \sqrt{{{2}^{2}}}=\sqrt{{{\left({{2}^{5}} \right)}^{3}}\cdot {{\left({{2}^{2}} \right)}^{4}}}= \\ & =\sqrt{{{2}^{15}}\cdot {{2}^{8}}}=\sqrt{{{2}^{23}}} \\ \end{align}\]

Здесь многих смутило бы то, что на выходе получилось иррациональное число. Да, так бывает: мы не смогли полностью избавиться от корня, но по крайней мере существенно упростили выражение.

Пример 3. Упростите выражение:

\[\begin{align} & \sqrt{a}\cdot \sqrt{{{a}^{4}}}=\sqrt{{{a}^{3}}\cdot {{\left({{a}^{4}} \right)}^{6}}}=\sqrt{{{a}^{3}}\cdot {{a}^{24}}}= \\ & =\sqrt{{{a}^{27}}}=\sqrt{{{a}^{3\cdot 9}}}=\sqrt{{{a}^{3}}} \end{align}\]

Вот на это задание хотел бы обратить ваше внимание. Тут сразу два момента:

  1. Под корнем стоит не конкретное число или степень, а переменная $a$. На первый взгляд, это немного непривычно, но в действительности при решении математических задач чаще всего придётся иметь дело именно с переменными.
  2. В конце мы умудрились «сократить» показатель корня и степень в подкоренном выражении. Такое случается довольно часто. И это означает, что можно было существенно упростить вычисления, если не пользоваться основной формулой.

Например, можно было поступить так:

\[\begin{align} & \sqrt{a}\cdot \sqrt{{{a}^{4}}}=\sqrt{a}\cdot \sqrt{{{\left({{a}^{4}} \right)}^{2}}}=\sqrt{a}\cdot \sqrt{{{a}^{8}}} \\ & =\sqrt{a\cdot {{a}^{8}}}=\sqrt{{{a}^{9}}}=\sqrt{{{a}^{3\cdot 3}}}=\sqrt{{{a}^{3}}} \\ \end{align}\]

По сути, все преобразования выполнялись лишь со вторым радикалом. И если не расписывать детально все промежуточные шаги, то в итоге объём вычислений существенно снизится.

На самом деле мы уже сталкивались с подобным задание выше, когда решали пример $\sqrt{5}\cdot \sqrt{3}$. Теперь его можно расписать намного проще:

\[\begin{align} & \sqrt{5}\cdot \sqrt{3}=\sqrt{{{5}^{4}}\cdot {{3}^{2}}}=\sqrt{{{\left({{5}^{2}}\cdot 3 \right)}^{2}}}= \\ & =\sqrt{{{\left(75 \right)}^{2}}}=\sqrt{75}. \end{align}\]

Ну что ж, с умножением корней разобрались. Теперь рассмотрим обратную операцию: что делать, когда под корнем стоит произведение?

Ученики всегда спрашивают: «Почему нельзя пользоваться калькулятором на экзамене по математике? Как извлечь корень квадратный из числа без калькулятора?» Попробуем ответить на этот вопрос.

Как же извлечь корень квадратный из числа без помощи калькулятора?

Действие извлечения корня квадратного обратно действию возведения в квадрат.

√81= 9 9 2 =81

Если из положительного числа извлечь корень квадратный и результат возвести в квадрат, получим то же число.

Из небольших чисел, являющихся точными квадратами натуральных чисел, например 1, 4, 9, 16, 25, …,100 квадратные корни можно извлечь устно. Обычно в школе учат таблицу квадратов натуральных чисел до двадцати. Зная эту таблицу легко извлечь корни квадратные из чисел 121,144, 169, 196, 225, 256, 289, 324, 361, 400. Из чисел больших 400 можно извлекать методом подбора используя, некоторые подсказки. Давайте попробуем на примере рассмотреть этот метод.

Пример: Извлечь корень из числа 676 .

Замечаем, что 20 2 = 400, а 30 2 = 900, значит 20 < √676 < 900.

Точные квадраты натуральных чисел оканчиваются цифрами 0; 1; 4; 5; 6; 9.
Цифру 6 дают 4 2 и 6 2 .
Значит, если из 676 извлекается корень, то это либо 24, либо 26.

Осталось проверить: 24 2 = 576, 26 2 = 676.

Ответ: √676 = 26 .

Еще пример: √6889 .

Так как 80 2 = 6400, а 90 2 = 8100, то 80 < √6889 < 90.
Цифру 9 дают 3 2 и 7 2 , то √6889 равен либо 83, либо 87.

Проверяем: 83 2 = 6889.

Ответ: √6889 = 83 .

Если затрудняетесь решать методом подбора, то можно подкоренное выражение разложить на множители.

Например, найти √893025 .

Разложим число 893025 на множители, вспомните, вы делали это в шестом классе.

Получаем: √893025 = √3 6 ∙5 2 ∙7 2 = 3 3 ∙5 ∙7 = 945.

Еще пример: √20736 . Разложим число 20736 на множители:

Получаем √20736 = √2 8 ∙3 4 = 2 4 ∙3 2 = 144.

Конечно, разложение на множители требует знания признаков делимости и навыков разложения на множители.

И, наконец, есть же правило извлечение корней квадратных . Давайте познакомимся с этим правилом на примерах.

Вычислите √279841 .

Чтобы извлечь корень из многоцифрового целого числа, разбиваем его справа налево на грани, содержащие по 2 цифры (в левой крайней грани может оказаться и одна цифра). Записываем так 27’98’41

Чтобы получить первую цифру корня (5), извлекаем квадратный корень из наибольшего точного квадрата, содержащегося в первой слева грани (27).
Потом вычитают из первой грани квадрат первой цифры корня (25) и к разности приписывают (сносят) следующую грань (98).
Слева от полученного числа 298 пишут удвоенную цифру корня (10), делят на нее число всех десятков раннее полученного числа (29/2 ≈ 2), испытывают частное (102 ∙2 = 204 должно быть не больше 298) и записывают (2) после первой цифры корня.
Потом вычитают от 298 полученное частное 204 и к разности (94) приписывают (сносят) следующую грань (41).
Слева от полученного числа 9441 пишут удвоенное произведение цифр корня (52 ∙2 = 104), делят на это произведение число всех десятков числа 9441 (944/104 ≈ 9), испытывают частное (1049 ∙9 = 9441) должно быть 9441 и записывают его (9) после второй цифры корня.

Получили ответ √279841 = 529.

Аналогично извлекают корни из десятичных дробей . Только подкоренное число надо разбивать на грани так, чтобы запятая была между гранями.

Пример . Найдите значение √0,00956484.

Только надо помнить, что если десятичная дробь имеет нечетное число десятичных знаков, из нее точно квадратный корень не извлекается .

Итак, теперь вы познакомились с тремя способами извлечения корня. Выбирайте тот, который вам больше подходит и практикуйтесь. Чтобы научиться решать задачи, их надо решать. А если у Вас возникнут вопросы, записывайтесь на мои уроки .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Квадратным корнем из числа a называют такое число, квадрат которого равен a. Например, числа -5 и 5 являются квадратными корнями из числа 25. То есть, корни уравнения x^2=25, являются квадратными корнями из числа 25. Теперь необходимо научиться работать с операцией извлечения квадратного корня: изучить его основные свойства.

Квадратный корень из произведения

√(a*b) =√a*√b

Квадратный корень из произведения двух неотрицательных чисел, равен произведению квадратных корней из этих чисел. Например, √(9*25) = √9*√25 =3*5 =15;

Важно понимать, что это свойство распространяется и на тот случай, когда подкоренное выражение представляет собой произведение трех, четырех и т.д. неотрицательных множителей.

Иногда встречается и другая формулировка этого свойства. Если a и b есть неотрицательные числа, то справедливо следующее равенство √(a*b) =√a*√b. Разницы между ними нет абсолютно никакой, можно использовать как одну, так и другую формулировку(кому какую удобнее запомнить).

Квадратный корень из дроби

Если a>=0 и b>0, то справедливо следующее равенство:

√(a/b) =√a/√b.

Например, √(9/25) = √9/√25 =3/5;

У этого свойства тоже существует другая формулировка, на мой взгляд, более удобная для запоминания.
Квадратный корень частного равен частному от корней.

Стоит отметить, что эти формулы работают как слева направо, так и справа налево. То есть при необходимости, мы можем произведение корней представить как корень из произведения. Тоже самое касается и второго свойства.

Как вы могли заметить, эти свойства очень удобны, и хотелось бы иметь такие же свойства для сложения и вычитания:

√(a+b) =√a+√b;

√(a-b) =√a-√b;

Но к сожалению таких свойств квадратные корни не имеют , и поэтому так делать при вычислениях нельзя .

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...