Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Преобразование рациональных алгебраических выражений. Грамотное преобразование рациональных выражений

Рациональные выражения и дроби — краеугольный пункт всего курса алгебры. Те, кто научатся работать с такими выражениями, упрощать их и раскладывать на множители, по сути смогут решить любую задачу, поскольку преобразование выражений — неотъемлемая часть любого серьёзного уравнения, неравенства и даже текстовой задачи.

В этом видеоуроке мы посмотрим, как грамотно применять формулы сокращённого умножения для упрощения рациональных выражений и дробей. Научимся видеть эти формулы там, где, на первый взгляд, ничего нет. Заодно повторим такой нехитрый приём, как разложение квадратного трёхчлена на множители через дискриминант.

Как вы уже наверняка догадались по формулам за моей спиной, сегодня мы будем изучать формулы сокращенного умножения, а, точнее, не сами формулы, а их применение для упрощения и сокращения сложных рациональных выражений. Но, прежде чем переходить к решению примеров, давайте познакомимся ближе с этими формулами или вспомним их:

  1. ${{a}^{2}}-{{b}^{2}}=\left(a-b \right)\left(a+b \right)$ — разность квадратов;
  2. ${{\left(a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ — квадрат суммы;
  3. ${{\left(a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ — квадрат разности;
  4. ${{a}^{3}}+{{b}^{3}}=\left(a+b \right)\left({{a}^{2}}-ab+{{b}^{2}} \right)$ — сумма кубов;
  5. ${{a}^{3}}-{{b}^{3}}=\left(a-b \right)\left({{a}^{2}}+ab+{{b}^{2}} \right)$ — разность кубов.

Еще хотел бы отметить, что наша школьная система образования устроена таким образом, что именно с изучением этой темы, т.е. рациональных выражений, а также корней, модулей у всех учеников возникает одна и та же проблема, которую я сейчас объясню.

Дело в том, что в самом начале изучения формул сокращенного умножения и, соответственно, действий по сокращению дробей (это где-то 8 класс) учителя говорят что-то следующее: «Если вам что-то непонятно, то вы не переживайте, мы к этой теме еще вернемся неоднократно, в старших классах так точно. Мы это еще разберем». Ну а затем на рубеже 9-10 класса те же самые учителя объясняют тем же самым ученикам, которые так и не знают, как решать рациональные дроби, примерно следующее: «А где вы были предыдущие два года? Это же изучалось на алгебре в 8 классе! Чего тут может быть непонятного? Это же так очевидно!».

Однако обычным ученикам от таких объяснений нисколько не легче: у них как была каша в голове, так и осталась, поэтому прямо сейчас мы разберем два простых примера, на основании которых и посмотрим, каким образом в настоящих задачах выделять эти выражения, которые приведут нас к формулам сокращенного умножения и как потом применять это для преобразования сложных рациональных выражений.

Сокращение простых рациональных дробей

Задача № 1

\[\frac{4x+3{{y}^{2}}}{9{{y}^{4}}-16{{x}^{2}}}\]

Первое, чему нам нужно научиться — выделять в исходных выражениях точные квадраты и более высокие степени, на основании которых мы сможем потом применять формулы. Давайте посмотрим:

Перепишем наше выражение с учетом этих фактов:

\[\frac{4x+3{{y}^{2}}}{{{\left(3{{y}^{2}} \right)}^{2}}-{{\left(4x \right)}^{2}}}=\frac{4x+3{{y}^{2}}}{\left(3{{y}^{2}}-4x \right)\left(3{{y}^{2}}+4x \right)}=\frac{1}{3{{y}^{2}}-4x}\]

Ответ: $\frac{1}{3{{y}^{2}}-4x}$.

Задача № 2

Переходим ко второй задаче:

\[\frac{8}{{{x}^{2}}+5xy-6{{y}^{2}}}\]

Упрощать тут нечего, потому что в числителе стоит константа, но я предложил эту задачу именно для того, чтобы вы научились раскладывать на множители многочлены, содержащие две переменных. Если бы вместо него был написанный ниже многочлен, как бы мы разложили его?

\[{{x}^{2}}+5x-6=\left(x-... \right)\left(x-... \right)\]

Давайте решим уравнение и найдем $x$, которые мы сможем поставить вместо точек:

\[{{x}^{2}}+5x-6=0\]

\[{{x}_{1}}=\frac{-5+7}{2}=\frac{2}{2}=1\]

\[{{x}_{2}}=\frac{-5-7}{2}=\frac{-12}{2}=-6\]

Мы можем переписать трехчлен следующим образом:

\[{{x}^{2}}+5xy-6{{y}^{2}}=\left(x-1 \right)\left(x+6 \right)\]

С квадратным трехчленом мы работать научились — для этого и нужно было записать этот видеоурок. А что делать, если кроме $x$ и константы присутствует еще $y$? Давайте рассмотрим их как еще одни элементы коэффициентов, т.е. перепишем наше выражение следующим образом:

\[{{x}^{2}}+5y\cdot x-6{{y}^{2}}\]

\[{{x}_{1}}=\frac{-5y+7y}{2}=y\]

\[{{x}_{2}}=\frac{-5y-7y}{2}=\frac{-12y}{2}=-6y\]

Запишем разложение нашей квадратной конструкции:

\[\left(x-y \right)\left(x+6y \right)\]

Итого если мы вернемся к исходному выражению и перепишем его с учетом изменений, то получим следующее:

\[\frac{8}{\left(x-y \right)\left(x+6y \right)}\]

Что нам дает такая запись? Ничего, потому что его не сократить, оно ни на что не умножается и не делится. Однако как только эта дробь окажется составной частью более сложного выражения, подобное разложение окажется кстати. Поэтому как только вы видите квадратный трехчлен (неважно, отягощен он дополнительными параметрами или нет), всегда старайтесь разложить его на множители.

Нюансы решения

Запомните основные правила преобразования рациональных выражений:

  • Все знаменатели и числители необходимо раскладывать на множители либо через формулы сокращенного умножения, либо через дискриминант.
  • Работать нужно по такому алгоритму: когда мы смотрим и пытаемся выделить формулу сокращенного умножения, то, прежде всего, пытаемся все перевести в максимально возможную степень. После этого выносим за скобку общую степень.
  • Очень часто будут встречаться выражения с параметром: в качестве коэффициентов будут возникать другие переменные. Их мы находим по формуле квадратного разложения.

Таким образом, как только вы видите рациональные дроби, первое, что нужно сделать — это разложить и числитель, и знаменатель на множители (на линейные выражения), при этом мы используем формулы сокращенного умножения или дискриминант.

Давайте посмотрим на пару таких рациональных выражений и попробуем их разложить на множители.

Решение более сложных примеров

Задача № 1

\[\frac{4{{x}^{2}}-6xy+9{{y}^{2}}}{2x-3y}\cdot \frac{9{{y}^{2}}-4{{x}^{2}}}{8{{x}^{3}}+27{{y}^{3}}}\]

Переписываем и стараемся разложить каждое слагаемое:

Давайте перепишем все наше рациональное выражение с учетом этих фактов:

\[\frac{{{\left(2x \right)}^{2}}-2x\cdot 3y+{{\left(3y \right)}^{2}}}{2x-3y}\cdot \frac{{{\left(3y \right)}^{2}}-{{\left(2x \right)}^{2}}}{{{\left(2x \right)}^{3}}+{{\left(3y \right)}^{3}}}=\]

\[=\frac{{{\left(2x \right)}^{2}}-2x\cdot 3y+{{\left(3y \right)}^{2}}}{2x-3y}\cdot \frac{\left(3y-2x \right)\left(3y+2x \right)}{\left(2x+3y \right)\left({{\left(2x \right)}^{2}}-2x\cdot 3y+{{\left(3y \right)}^{2}} \right)}=-1\]

Ответ: $-1$.

Задача № 2

\[\frac{3-6x}{2{{x}^{2}}+4x+8}\cdot \frac{2x+1}{{{x}^{2}}+4-4x}\cdot \frac{8-{{x}^{3}}}{4{{x}^{2}}-1}\]

Давайте рассмотрим все дроби.

\[{{x}^{2}}+4-4x={{x}^{2}}-4x+2={{x}^{2}}-2\cdot 2x+{{2}^{2}}={{\left(x-2 \right)}^{2}}\]

Перепишем всю конструкцию с учетом изменений:

\[\frac{3\left(1-2x \right)}{2\left({{x}^{2}}+2x+{{2}^{2}} \right)}\cdot \frac{2x+1}{{{\left(x-2 \right)}^{2}}}\cdot \frac{\left(2-x \right)\left({{2}^{2}}+2x+{{x}^{2}} \right)}{\left(2x-1 \right)\left(2x+1 \right)}=\]

\[=\frac{3\cdot \left(-1 \right)}{2\cdot \left(x-2 \right)\cdot \left(-1 \right)}=\frac{3}{2\left(x-2 \right)}\]

Ответ: $\frac{3}{2\left(x-2 \right)}$.

Нюансы решения

Итак, чему мы только что научились:

  • Далеко не каждый квадратный трехчлен раскладывается на множители, в частности, это относится к неполному квадрату суммы или разности, которые очень часто встречаются как части кубов суммы или разности.
  • Константы, т.е. обычные числа, не имеющие при себе переменных, также могут выступать активными элементами в процессе разложения. Во-первых, их можно выносить за скобки, во-вторых, сами константы могут быть представимы в виде степеней.
  • Очень часто после разложения всех элементов на множители возникают противоположные конструкции. Сокращать эти дроби нужно крайне аккуратно, потому что при из зачеркивании либо сверху, либо снизу возникает дополнительный множитель $-1$ — это как раз и есть следствие того, что они противоположны.

Решение сложных задач

\[\frac{27{{a}^{3}}-64{{b}^{3}}}{{{b}^{2}}-4}:\frac{9{{a}^{2}}+12ab+16{{b}^{2}}}{{{b}^{2}}+4b+4}\]

Рассмотрим каждое слагаемое отдельно.

Первая дробь:

\[{{\left(3a \right)}^{3}}-{{\left(4b \right)}^{3}}=\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)\]

\[{{b}^{2}}-{{2}^{2}}=\left(b-2 \right)\left(b+2 \right)\]

Весь числитель второй дроби мы можем переписать следующим образом:

\[{{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}}\]

Теперь посмотрим на знаменатель:

\[{{b}^{2}}+4b+4={{b}^{2}}+2\cdot 2b+{{2}^{2}}={{\left(b+2 \right)}^{2}}\]

Давайте перепишем все рациональное выражение с учетом вышеизложенных фактов:

\[\frac{\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)}{\left(b-2 \right)\left(b+2 \right)}\cdot \frac{{{\left(b+2 \right)}^{2}}}{{{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}}}=\]

\[=\frac{\left(3a-4b \right)\left(b+2 \right)}{\left(b-2 \right)}\]

Ответ: $\frac{\left(3a-4b \right)\left(b+2 \right)}{\left(b-2 \right)}$.

Нюансы решения

Как мы еще раз убедились, неполные квадраты суммы либо неполные квадраты разности, которые часто встречаются в реальных рациональных выражениях, однако не стоит их пугаться, потому что после преобразования каждого элемента они практически всегда сокращаются. Кроме того, ни в коем случае не стоит бояться больших конструкций в итогом ответе — вполне возможно, что это не ваша ошибка (особенно, если все разложено на множители), а это автор задумал такой ответ.

В заключение хотелось бы разобрать еще один сложных пример, который уже не относится напрямую к рациональным дробям, однако он содержит все то, что ждет вас на настоящих контрольных и экзаменах, а именно: разложение на множители, приведение к общему знаменателю, сокращение подобных слагаемых. Вот именно этим мы сейчас и займемся.

Решение сложной задачи на упрощение и преобразование рациональных выражений

\[\left(\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{x-2} \right)\cdot \left(\frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x} \right)\]

Сначала рассмотрим и раскроем первую скобку: в ней мы видим три отдельных дроби с разными знаменателями поэтому первое, что нам необходимо сделать — это привести все три дроби к общему знаменателю, а для этого каждый из них следует разложить на множители:

\[{{x}^{2}}+2x+4={{x}^{2}}+2\cdot x+{{2}^{2}}\]

\[{{x}^{2}}-8={{x}^{3}}-{{2}^{2}}=\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)\]

Перепишем всю нашу конструкцию следующим образом:

\[\frac{x}{{{x}^{2}}+2x+{{2}^{2}}}+\frac{{{x}^{2}}+8}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}-\frac{1}{x-2}=\]

\[=\frac{x\left(x-2 \right)+{{x}^{3}}+8-\left({{x}^{2}}+2x+{{2}^{2}} \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\]

\[=\frac{{{x}^{2}}-2x+{{x}^{2}}+8-{{x}^{2}}-2x-4}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\frac{{{x}^{2}}-4x-4}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\]

\[=\frac{{{\left(x-2 \right)}^{2}}}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\frac{x-2}{{{x}^{2}}+2x+4}\]

Это результат вычислений из первой скобки.

Разбираемся со второй скобкой:

\[{{x}^{2}}-4={{x}^{2}}-{{2}^{2}}=\left(x-2 \right)\left(x+2 \right)\]

Перепишем вторую скобку с учетом изменений:

\[\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}+\frac{2}{x-2}=\frac{{{x}^{2}}+2\left(x+2 \right)}{\left(x-2 \right)\left(x+2 \right)}=\frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}\]

Теперь запишем всю исходную конструкцию:

\[\frac{x-2}{{{x}^{2}}+2x+4}\cdot \frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}=\frac{1}{x+2}\]

Ответ: $\frac{1}{x+2}$.

Нюансы решения

Как видите, ответ получился вполне вменяемый. Однако обратите внимание: очень часто при таких масштабных вычислениях, когда единственная переменная оказывается лишь в знаменателе, ученики забывают, что это знаменатель и он должен стоял внизу дроби и пишут это выражение в числитель — это грубейшая ошибка.

Кроме того, хотел бы обратить ваше отдельное внимание на то, как оформляются такие задачи. В любых сложных вычислениях все шаги выполняются по действиям: сначала отдельно считаем первую скобку, потом отдельно вторую и лишь в конце мы объединяем все части и считаем результат. Таким образом мы страхуем себя от глупых ошибок, аккуратно записываем все выкладки и при этом нисколько не тратим лишнего времени, как это может показаться на первый взгляд.

Преобразование рациональных выражений

В этом уроке поработаем с рациональными выражениями. На конкретных примерах рассмотрим методы решения задач на преобразования рациональных выражений и доказательство связанных с ними тождеств.

Рациональное выражение - алгебраическое выражение, составленное из чисел, буквенных переменных, арифметических операций, возведения в натуральную степень, и знаков последовательности этих действий (скобок). Вместе со словосочетанием «рациональное выражение» в алгебре используют иногда термины «целое» или «дробное».

Например, выражения

являются и рациональными, и целыми.

Выражения

являются и рациональными, и дробными, т.к. в знаменателе находится выражение с переменной.

Не надо забывать, что дробь теряет смысл, если знаменатель обращается в нуль.

Основной целью урока будет приобретение опыта при решении задач на упрощение рациональных выражений.

Упрощение рациональных выражений — это применение тождественных преобразований, с целью упростить запись выражения (сделать короче и удобнее для дальнейшей работы).

Для преобразования рациональных выражений нам потребуются правила сложения (вычитания), умножения, деления и возведения в степень алгебраических дробей, все эти действия совершаются по тем же правилам, что и действия с обыкновенными дробями:

А также формулы сокращенного умножения:

При решении примеров по преобразованию рациональных выражений следует соблюдать следующий порядок действий: сначала выполняются действия в скобках, затем произведение/деление (либо возведение в степень), а затем действия сложения/вычитания.

Итак, рассмотрим пример 1:

необходимо упростить выражение

Во-первых, выполняем действия в скобках.

Приводим алгебраические дроби к общему знаменателю и осуществляем сложение (вычитание) дробей с одинаковыми знаменателями по правилам, записанным выше.

Используя формулу сокращенного выражения (а именно квадрат разности), полученное выражение принимает вид:

Во-вторых, по правилам умножения алгебраических дробей перемножаем числители и отдельно знаменатели:

А затем сокращаем полученное выражение:

В результате проведенных преобразований получаем простое выражение

Рассмотрим более сложный пример 2 преобразования рациональных выражений: необходимо доказать тождество:

Доказать тождество - это установить, что при всех допустимых значениях переменных его левая и правая части равны.

Доказательство:

Чтобы доказать данное тождество, необходимо преобразовать выражение в левой части. Для этого следует соблюдать порядок действий, изложенный выше: в первую очередь выполняются действия в скобках, затем умножение, а затем уже сложение.

Итак, действие 1:

выполнить сложение/вычитание выражения в скобке.

Для этого раскладываем на множители выражения в знаменателях дробей и приводим данные дроби к общему знаменателю.

Так в знаменателе первой дроби выносим за скобку 3, в знаменателе второй - выносим знак минус и по формуле сокращенного умножения раскладываем на два множителя, а в знаменателе третьей дроби выносим за скобку x.

Общим знаменателем этих трех дробей будет выражение

Действие 2:

выполнить умножение дроби

Для этого прежде следует разложить на множители числитель первой дроби и возвести эту дробь в степень 2.

А при умножении дробей выполнить соответствующее сокращение.

Действие 3:

Суммируем первую дробь исходного выражения и получившуюся дробь

Для этого сначала разложим на множители числитель и знаменатель первой дроби и сократим:

Теперь остается только сложить полученные алгебраические дроби с разными знаменателями:

Таким образом, в результате 3-х действий и упрощения левой части тождества мы получили выражение из правой его части, а следовательно, доказали это тождество. Однако напомним, что тождество справедливо лишь для допустимых значений переменной x. Таковыми в данном примере являются любые значения x, кроме тех, которые обращают знаменатели дробей в нуль. Значит, допустимыми являются любые значения x, кроме тех, при которых выполняется хотя бы одно из равенств:

Недопустимыми будут значения:

Итак, на конкретных примерах мы рассмотрели решение задач на преобразования рациональных выражений и доказательство связанных с ними тождеств.

Список использованной литературы:

  1. Мордкович А.Г. «Алгебра» 8 класс. В 2 ч. Ч.1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. – 9-е изд., перераб. – М.: Мнемозина, 2007. – 215с.: ил.
  2. Мордкович А.Г. «Алгебра» 8 класс. В 2 ч. Ч.2. Задачник для общеобразовательных учреждений / А.Г. Мордкович, Т.Н. Мишустина, Е.Е. Тульчинская.. – 8-е изд., – М.: Мнемозина, 2006 – 239с.
  3. Алгебра. 8 класс. Контрольные работы для учащихся образовательных учреждений Л.А. Александрова под ред. А.Г. Мордковича 2-е изд., стер. - М.:Мнемозина 2009. - 40с.
  4. Алгебра. 8 класс. Самостоятельные работы для учащихся образовательных учреждений: к учебнику А.Г. Мордковича, Л.А. Александрова под ред. А.Г. Мордковича. 9-е изд., стер. - М.: Мнемозина 2013. - 112с.

Эта статья посвящена преобразованию рациональных выражений , преимущественно дробно рациональных, – одному из ключевых вопросов курса алгебры для 8 классов. Сначала мы напомним, выражения какого вида называют рациональными. Дальше остановимся на проведении стандартных преобразований с рациональными выражениями, таких как группировка слагаемых, вынесение за скобки общих множителей, приведение подобных слагаемых и т.п. Наконец, научимся представлять дробные рациональные выражения в виде рациональных дробей.

Навигация по странице.

Определение и примеры рациональных выражений

Рациональные выражения являются одним из видов выражений , изучаемых на уроках алгебры в школе. Дадим определение.

Определение.

Выражения, составленные из чисел, переменных, скобок, степеней с целыми показателями, соединенных с помощью знаков арифметических действий +, −, · и:, где деление может быть обозначено чертой дроби, называются рациональными выражениями .

Приведем несколько примеров рациональных выражений: .

Рациональные выражения начинают целенаправленно изучаться в 7 классе. Причем в 7 классе познаются основы работы с так называемыми целыми рациональными выражениями , то есть, с рациональными выражениями, которые не содержат деления на выражения с переменными. Для этого последовательно изучаются одночлены и многочлены , а также принципы выполнения действий с ними. Эти все знания в итоге позволяют выполнять преобразование целых выражений .

В 8 классе переходят к изучению рациональных выражений, содержащих деление на выражение с переменными, которые называют дробными рациональными выражениями . При этом особое внимание уделяется так называемым рациональным дробям (их также называют алгебраическими дробями ), то есть дробям, в числителе и знаменателе которых находятся многочлены. Это в итоге дает возможность выполнять преобразование рациональных дробей .

Полученные навыки позволяют перейти к преобразованию рациональных выражений произвольного вида. Это объясняется тем, что любое рациональное выражение можно рассматривать как выражение, составленное из рациональных дробей и целых выражений, соединенных знаками арифметических действий. А работать с целыми выражениями и алгебраическими дробями мы уже умеем.

Основные виды преобразований рациональных выражений

С рациональными выражениями можно проводить любые из основных тождественных преобразований , будь то группировка слагаемых или множителей, приведение подобных слагаемых, выполнение действий с числами и т.п. Обычно целью выполнения этих преобразований является упрощение рационального выражения .

Пример.

.

Решение.

Понятно, что данное рациональное выражение представляет собой разность двух выражений и , причем данные выражения являются подобными, так как имеют одинаковую буквенную часть. Таким образом, мы можем выполнить приведение подобных слагаемых :

Ответ:

.

Понятно, что при проведении преобразований с рациональными выражениями, как, впрочем, и с любыми другими выражениями, нужно оставаться в рамках принятого порядка выполнения действий .

Пример.

Выполните преобразование рационального выражения .

Решение.

Мы знаем, что сначала выполняются действия в скобках. Поэтому в первую очередь преобразуем выражение в скобках: 3·x−x=2·x .

Теперь можно подставить полученный результат в исходное рациональное выражение: . Так мы пришли к выражению, содержащему действия одной ступени – сложение и умножение.

Избавимся от скобок в конце выражения, применив свойство деления на произведение: .

Наконец, мы можем сгруппировать числовые множители и множители с переменной x, после чего выполнить соответствующие действия с числами и применить : .

На этом преобразование рационального выражения завершено, и в результате мы получили одночлен.

Ответ:

Пример.

Преобразуйте рациональное выражение .

Решение.

Сначала преобразуем числитель и знаменатель. Такой порядок преобразования дробей объясняется тем, что черта дроби по своей сути есть другое обозначение деления, и исходное рациональное выражение по сути есть частное вида , а действия в скобках выполняются в первую очередь.

Итак, в числителе выполняем действия с многочленами, сначала умножение, затем – вычитание, а в знаменателе сгруппируем числовые множители, и вычислим их произведение: .

Еще представим числитель и знаменатель полученной дроби в виде произведения: вдруг возможно сокращение алгебраической дроби . Для этого в числителе воспользуемся формулой разности квадратов , а в знаменателе вынесем двойку за скобки, имеем .

Ответ:

.

Итак, начальное знакомство с преобразованием рациональных выражений можно считать состоявшимся. Переходим, так сказать, к самому сладкому.

Представление в виде рациональной дроби

Наиболее часто конечной целью преобразования выражений является упрощение их вида. В этом свете самым простым видом, к которому можно преобразовать дробно рациональное выражение, является рациональная (алгебраическая) дробь, и в частном случае многочлен, одночлен или число.

А любое ли рациональное выражение возможно представить в виде рациональной дроби? Ответ утвердительный. Поясним, почему это так.

Как мы уже сказали, всякое рациональное выражение можно рассматривать как многочлены и рациональные дроби, соединенные знаками плюс, минус, умножить и разделить. Все соответствующие действия с многочленами дают многочлен или рациональную дробь. В свою очередь любой многочлен можно преобразовать в алгебраическую дробь, записав его со знаменателем 1 . А сложение, вычитание, умножение и деление рациональных дробей в результате дают новую рациональную дробь. Следовательно, выполнив все действия с многочленами и рациональными дробями в рациональном выражении, мы получим рациональную дробь.

Пример.

Представьте в виде рациональной дроби выражение .

Решение.

Исходное рациональное выражение представляет собой разность дроби и произведения дробей вида . Согласно порядку выполнения действий мы сначала должны выполнить умножение, а уже потом – сложение.

Начинаем с умножения алгебраических дробей :

Подставляем полученный результат в исходное рациональное выражение: .

Мы пришли к вычитанию алгебраических дробей с разными знаменателями:

Итак, выполнив действия с рациональными дробями, составляющими исходное рациональное выражение, мы его представили в виде рациональной дроби .

Ответ:

.

Для закрепления материала разберем решение еще одного примера.

Пример.

Представьте рациональное выражение в виде рациональной дроби.

Любое дробное выражение (п. 48) можно записать в виде , где Р и Q - рациональные выражения, причем Q обязательно содержит переменные. Такую дробь - называют рациональной дробью.

Примеры рациональных дробей:

Основное свойство дроби выражается тождеством справедливым при условиях здесь - целое рациональное выражение. Это значит, что числитель и знаменатель рациональной дроби можно умножить или разделить на одно и то же отличное от нуля число, одночлен или многочлен.

Например, свойство дроби может быть использовано для перемены знаков у членов дроби. Если числитель и знаменатель дроби - умножить на -1, получим Таким образом, значение дроби не изменится, если одновременно изменить знаки у числителя и знаменателя. Если же изменить знак только у числителя или только у знаменателя, то и дробь изменит свои знак:

Например,

60. Сокращение рациональных дробей.

Сократить дробь - это значит разделить числитель и знаменатель дроби на общий множитель. Возможность такого сокращения обусловлена основным свойством дроби.

Для того чтобы сократить рациональную дробь, нужно числитель и знаменатель разложить на множители. Если окажется, что числитель и знаменатель имеют общие множители, то дробь можно сократить. Если общих множителей нет, то преобразование дроби посредством сокращения невозможно.

Пример. Сократить дробь

Решение. Имеем

Сокращение дроби выполнено при условии .

61. Приведение рациональных дробей к общему знаменателю.

Общим знаменателем нескольких рациональных дробей называется целое рациональное выражение, которое делится на знаменатель каждой дроби (см. п. 54).

Например, общим знаменателем дробей и служит многочлен так как он делится и на и на и многочлен и многочлен и многочлен и т. д. Обычно берут такой общий знаменатель, что любой другой общий знаменатель делится на Еыбранный. Такой простейший знаменатель называют иногда наименьшим общим знаменателем.

В рассмотренном выше примере общий знаменатель равен Имеем

Приведение данных дробей к общему знаменателю достигнуто путем умножения числителя и знаменателя первой дроби на 2. а числителя и знаменателя второй дроби на Многочлены называются дополнительными множителями соответственно для первой и второй дроби. Дополнительный множитель для данной дроби равен частному от деления общего знаменателя на знаменатель данной дроби.

Чтобы несколько рациональных дробей привести к общему знаменателю, нужно:

1) разложить знаменатель каждой дроби на множители;

2) составить общий знаменатель, включив в него в качестве сомножителей все множители полученных в п. 1) разложений; если некоторый множитель имеется в нескольких разложениях, то он берется с показателем степени, равным наибольшему из имеющихся;

3) найтн дополнительные множители для каждой из дробей (для этого общий знаменатель делят на знаменатель дроби);

4) домножив числитель и знаменатель каждой дроби на дополнительный множитель, привести дробн к общему знаменателю.

Пример. Привести к общему знаменателю дроби

Решение. Разложим знаменатели на множители:

В общий знаменатель надо включить следующие множители: и наименьшее общее кратное чисел 12, 18, 24, т. е. . Значит, общий знаменатель имеет вид

Дополнительные множители: для первой дроби для второй для третьей Значит, получаем:

62. Сложение и вычитание рациональных дробей.

Сумма двух (и вообще любого конечного числа) рациональных дробей с одинаковыми знаменателями тождественно равна дроби с тем же знаменателем и с числителем, равным сумме числителей складываемых дробей:

Аналогично обстоит дело в случае вычитания дробей с одинаковыми знаменателями:

Пример 1. Упростить выражение

Решение.

Для сложения или вычитания рациональных дробей с разными знаменателями нужно прежде всего привести дроби к общему знаменателю, а затем выполнить операции над полученными дробями с одинаковыми знаменателями.

Пример 2. Упростить выражение

Решение. Имеем

63. Умножение и деление рациональных дробей.

Произведение двух (и вообще любого конечного числа) рациональных дробей тождественно равно дроби, числитель которой равен произведению числителей, а знаменатель - произведению знаменателей перемножаемых дробей:

Частное от деления двух рациональных дробей тождественно равно дроби, числитель которой равен произведению числителя первой дроби на знаменатель второй дроби, а знаменатель - произведению внаменателя первой дроби на числитель второй дроби:

Сформулированные правила умножения и деления распространяются и на случай умножения или деления на многочлен: достаточно записать этот, многочлен в виде дроби со знаменателем 1.

Учитывая возможность сокращения рациональной дроби, полученной в результате умножения или деления рациональных дробей, обычно стремятся до выполнения этих операций разложить на множители числители и знаменатели исходных дробей.

Пример 1. Выполнить умножение

Решение. Имеем

Использовав правило умножения дробей, получаем:

Пример 2. Выполнить деление

Решение. Имеем

Использовав правило деления, получаем:

64. Возведение рациональной дроби в целую степень.

Чтобы возвести рациональную дробь - в натуральную степень , нужно возвести в эту степень отдельно числитель и знаменатель дроби; первое выражение - числитель, а второе выражение - знаменатель результата:

Пример 1. Преобразовать в дробь степень 3.

Решение Решение.

При возведении дроби в целую отрицательную степень используется тождество справедливое при всех значениях переменных, при которых .

Пример 2. Преобразовать в дробь выражение

65. Преобразование рациональных выражений.

Преобразование любого рационального выражения сводится к сложению, вычитанию, умножению и делению рациональных дробей, а также к возведению дроби в натуральную степень. Всякое рациональное выражение можно преобразовать в дробь, числитель и знаменатель которой - целые рациональные выражения; в этом, как правило, состоит цель тождественных преобразований рациональных выражений.

Пример. Упростить выражение

66. Простейшие преобразования арифметических корней (радикалов).

При преобразовании арифметических корией используются их свойства (см. п. 35).

Рассмотрим несколько примеров на применение свойств арифметических корней для простейших преобразований радикалов. При этом все переменные будем считать принимающими только неотрицательные значения.

Пример 1. Извлечь корень из произведения

Решение. Применив свойство 1°, получим:

Пример 2. Вынести множитель из-под знака корня

Решение.

Такое преобразование называется вынесением множителя из-под знака корня. Цель преобразования - упростить подкоренное выражение.

Пример 3. Упростить .

Решение. По свойству 3° имеем Обычно стараются подкоренное выражение упростить, для чего выносят множители за знак кория. Имеем

Пример 4. Упростить

Решение. Преобразуем выражение, внеся множитель под знак корня: По свойству 4° имеем

Пример 5. Упростить

Решение. По свойству 5° мы имеем право показатель корня и показатель степени подкоренного выражения разделить на одно и то же натуральное число. Если в рассматриваемом, примере разделить указанные показатели на 3, то получим .

Пример 6. Упростить выражения:

Решение, а) По свойству 1° получаем, что для перемножения корней одной и той же степени достаточно перемножить подкоренные выражения и из полученного результата извлечь корень той же степени. Значит,

б) Прежде всего мы должны привести радикалы к одному показателю. Согласно свойству 5° мы можем показатель корня показатель степени подкоренного выражения умножить на одно и то же натуральное число. Поэтому Далее имеем теперь в полученном результате раз делив показатели корня и степени подкоренного выражения На 3, получим .

>>Математика:Преобразование рациональных выражений

Преобразование рациональных выражений

Этот параграф подводит итог всему тому, что мы, начиная с 7-го класса, говорили о математическом языке, о математической символике, о числах, переменных, степенях, многочленах и алгебраических дробях . Но сначала совершим небольшой экскурс в прошлое.

Вспомните, как в младших классах обстояло дело с изучением чисел и числовых выражений.

А, скажем, к дроби можно приклеить только один ярлык - рациональное число.

Аналогично обстоит дело с алгебраическими выражениями: первый этап их изучения - числа, переменные, степени («цифры»); второй этап их изучения - одночлены («натуральные числа»); третий этап их изучения - многочлены («целые числа»); четвертый этап их изучения - алгебраические дроби
(«рациональные числа»). При этом каждый следующий этап как бы вбирает в себя предыдущий: так, числа, переменные, степени - частные случаи одночленов; одночлены - частные случаи многочленов; многочлены - частные случаи алгебраических дробей. Между прочим, в алгебре используют иногда и такие термины: многочлен - целое выражение , алгебраическая дробь - дробное выражение (это лишь усиливает аналогию).

Продолжим упомянутую аналогию. Вы знаете, что любое числовое выражение после выполнения всех входящих в его состав арифметических действий принимает конкретное числовое значение - рациональное число (разумеется, оно может оказаться и натуральным числом, и целым числом, и дробью - это неважно). Точно так же любое алгебраическое выражение, составленное из чисел и переменных с помощью арифметических операций и возведения в натуральную степень , после выполнения преобразований принимает вид алгебраической дроби и опять-таки, в частности, может получиться не дробь, а многочлен или даже одночлен). Для таких выражений в алгебре используют термин рациональное выражение.

Пример. Доказать тождество

Решение.
Доказать тождество - это значит установить, что при всех допустимых значениях переменных его левая и правая части представляют собой тождественно равные выражения. В алгебре тождества доказывают различными способами:

1) выполняют преобразования левой части и получают в итоге правую часть;

2) выполняют преобразования правой части и получают в итоге левую часть;

3) по отдельности преобразуют правую и левую части и получают и в первом и во втором случае одно и то же выражение;

4) составляют разность левой и правой частей и в результате ее преобразований получают нуль.

Какой способ выбрать - зависит от конкретного вида тождества , которое вам предлагается доказать. В данном примере целесообразно выбрать первый способ.

Для преобразования рациональных выражений принят тот же порядок действий, что и для преобразования числовых выражений. Это значит, что сначала выполняют действия в скобках, затем действия второй ступени (умножение, деление, возведение в степень), затем действия первой ступени (сложение, вычитание).

Выполним преобразования по действиям, опираясь на те правила, алгоритмы , что были выработаны в предыдущих параграфах.

Как видите, нам удалось преобразовать левую часть проверяемого тождества к виду правой части. Это значит, что тождество доказано. Однако напомним, что тождество справедливо лишь для допустимых значений переменных. Таковыми в данном примере являются любые значения а и b, кроме тех, которые обращают знаменатели дробей в нуль. Значит, допустимыми являются любые пары чисел (а; b), кроме тех, при которых выполняется хотя бы одно из равенств:

2а - b = 0, 2а + b = 0, b = 0.

Мордкович А. Г., Алгебра . 8 кл.: Учеб. для общеобразоват. учреждений.- 3-е изд., доработ. - М.: Мнемозина, 2001. - 223 с: ил.

Полный перечень тем по классам, календарный план согласно школьной программе по математике онлайн , видеоматериал по математике для 8 класса скачать

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...