Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Рекуперация тепла в системах вентиляции: принцип работы и варианты исполнения. Как сделать правильный выбор среди различных видов рекуператоров Сравнение рекуператоров воздуха

Рекуперация — это процесс возврата максимального количества энергии. В вентиляции рекуперацией называется процесс передачи тепловой энергии из вытяжного воздуха в приточный. Существует множество различных видов рекуператоров и в данной статье мы о каждом из них расскажем. Каждый из видов рекуператоров хорош по своему и обладает уникальными преимуществами, но любой из них позволит Вам экономить на обогреве приточного воздуха зимой не менее 50%, а чаще до 95%.

Процесс передачи тепла от вытяжного воздуха в приточный весьма интересен. Далее начнем разбирать каждый вид рекуператоров воздуха чтобы вы более легко поняли что же это такое и какой рекуператор нужен именно Вам.

Самый популярный вид рекуператоров, а точнее приточно-вытяжных установок с пластинчатым рекуператором. Свою популярность он завоевал благодаря простоте и надежности конструкции самого теплообменника рекуператора.

Принцип работы прост — два потока воздуха (вытяжной и приточный) пересекаются в теплообменнике рекуператора, но так, что их разделяют стенки. В итоге эти потоки не смешиваются. Теплый воздух нагревает стенки теплообменника, а стенки нагревают приточный воздух. Эффективность пластинчатых рекуператоров (КПД пластинчатого рекуператора) измеряется в процентах и соответствует:

45-78% для металлических и пластиковых теплообменников рекуператоров.

60-92% для пластинчатых рекуператоров с целлюлозными гигроскопичными теплообменниками.

Такой скачок КПД в сторону целлюлозных рекуператоров обусловлен во-первых возвратом влаги через стенки рекуператора из вытяжного воздуха в приточный, а во-вторых передачей в этой же влаге скрытого тепла. Ведь в рекуператорах роль играет не тепло самого воздуха, а тепло влаги, содержащейся в нем. Воздух без влаги обладает очень низкой теплоемкостью, а влага — это вода… с известной большой теплоемкостью.

Для всех рекуператоров, кроме целлюлозных, обязателен вывод дренажа. Т.е. при планировании установки рекуператора Вам необходимо помнить о том что требуется еще и подвод канализации.

Итак, плюсы:

1. Простота конструкции и надежность.

2. Высокий КПД.

3. Отсутствие дополнительных потребителей электроэнергии.

Ну и, конечно-же, минусы:

1. Для функционирования такого рекуператора — к нему должны подводиться и приток и вытяжка. Если система проектируется с нуля — то это не минус вовсе. А вот если система уже имеется и приток с вытяжкой находятся на расстоянии — лучше применить .

2. При минусовых температурах теплообменник рекуператора может обмерзать. Для его разморозки требуется либо прекращение или снижение подачи воздуха с улицы, либо применение байпасного клапана, который пускает приточный воздух в обход теплообменника, пока тот размораживается вытяжным воздухом. При таком режиме разморозки весь холодный воздух попадает в систему минуя рекуператор и требуется много электричества чтобы его нагреть. Исключение — целлюлозные пластинчатые рекуператоры.

3. В основном данные рекуператоры не возвращают влагу и подающийся воздух в помещения пересушен. Исключение — целлюлозные пластинчатые рекуператоры.

Второй по популярности вид рекуператоров. Еще бы… Высокий КПД, не замерзает, более компактный чем пластинчатый, да еще и влагу возвращает. Одни плюсы.

Роторный рекуператор сделан из алюминия, намотанного слоями на ротор, причем один лист плоский, а второй зигзагообразный. Чтобы воздух проходил. Приводится в движение электроприводом через ремень. Этот «барабан» вращается и каждая часть его при прохождении зоны вытяжки нагревается, а затем перемещаясь в зону притока охлаждается, тем самым передавая тепло приточному воздуху.

Для защиты от перетоков воздуха используется продувочный сектор.

Новый и не очень известный вид рекуператоров воздуха. В крышных рекуператорах на самом деле используются пластинчатые рекуператоры и иногда роторные, но мы решили вынести их отдельным видом рекуператоров, т.к. крышный рекуператор — это специфический отдельный вид приточно-вытяжных установок с рекуператором.

Крышные рекуператоры подходят для больших однообъемных помещений и являются вершиной удобства проектирования, монтажа и эксплуатации. Для его установки достаточно сделать нужное окно в кровле здания, поставить специальный «стакан», который распределяет нагрузку, и поставить в него крышный рекуператор. Всё просто. Забор воздуха производится из-под потолка в помещении, а подача по пожеланиям заказчика, либо из-под потолка, либо в зону дыхания рабочих или посетителей торговых центров.

Рекуператор с промежуточным теплоносителем:

А этот вид рекуператоров подойдет для уже существующих систем вентиляции «приток отдельно — вытяжка отдельно».

Ну или при невозможности построения новой системы вентиляции с каким либо видом рекуператора, который предполагает собой подвод притока и вытяжки в одно помещение. Но стоит помнить что и пластинчатые и роторные теплообменники обладают белее высоким КПД, чем гликолевые.

В этой статье мы рассмотрим такую характеристику теплообмена, как коэффициент рекуперации. Он показывает степень использования одним носителем тепла другого при теплообмене. Коэффициент рекуперации может называться коэффициентом регенерации тепла, эффективности теплообмена или термической эффективности.

В первой части статьи мы попробуем найти универсальные соотношения для теплообмена. Они могут быть получены из самых общих физических принципов и не требуют проведения каких-либо измерений. Во второй части представим зависимости реальных коэффициентов рекуперации от основных характеристик теплообмена для реальных воздушных завес или отдельно для теплообменных блоков «вода - воздух», которые уже были рассмотрены в статьях «Мощность тепловой завесы при произвольных расходах теплоносителя и воздуха. Интерпретация опытных данных» и «Мощность тепловой завесы при произвольных расходах теплоносителя и воздуха. Инварианты процесса теплопередачи», опубликованных журналом «Мир климата» в номерах 80 и 83 соответственно. Будет показано, как коэффициенты зависят от характеристик теплообменника, а также то, какое влияние на них оказывают расходы теплоносителей. Будут объяснены некоторые парадоксы теплообмена, в частности парадокс высокого значения коэффициента рекуперации при большой разнице в расходах теплоносителей. Для упрощения само понятие рекуперации и смысл ее количественного определения (коэффициент) рассмотрим на примере теплообменников «воздух - воздух». Это позволит определить подход к смыслу явления, который затем можно расширить и на любой обмен, в том числе «вода - воздух». Отметим, что в теплообменных блоках «воздух - воздух» могут быть организованы как перекрестные, принципиально близкие теплообменникам «вода - воздух», так и встречные токи обменивающихся теплом сред. В случае встречных токов, которые определяют высокие значения коэффициентов рекуперации, практические закономерности теплообмена могут несколько отличаться от разобранных ранее . Важно, что универсальные закономерности теплообмена справедливы вообще для любых типов теплообменного блока. В рассуждениях статьи будем считать, что энергия при теплопередаче сохраняется. Это равносильно утверждению, что мощность излучения и конвекция тепла от корпуса теплового оборудования, обусловленные значением температуры корпуса, малы по сравнению с мощностью полезной теплопередачи. Будем также считать, что теплоемкость носителей не зависит от их температур.

КОГДА ВАЖЕН ВЫСОКИЙ КОЭФФИЦИЕНТ РЕКУПЕРАЦИИ?

Можно считать, что способность к передаче определенной величины тепловой мощности - одна из основных характеристик любого теплового оборудования. Чем выше эта способность, тем оборудование дороже. Коэффициент рекуперации в теории может изменяться от 0 до 100%, а на практике часто от 25 до 95%. Интуитивно можно предположить, что высокий коэффициент рекуперации, так же как и способность к передаче большой мощности, подразумевает высокие потребительские качества оборудования. Однако в действительности такой прямой связи не наблюдается, все зависит от условий использования теплообмена. Когда же высокая степень рекуперации тепла важна, а когда второстепенна? Если теплоноситель, от которого производится отбор тепла или холода, используется лишь однократно, то есть не закольцован, и сразу после использования безвозвратно сбрасывается во внешнюю среду, то для эффективного использования этого тепла желательно использовать аппарат с высоким коэффициентом рекуперации. В качестве примеров можно привести использование тепла или холода части геотермальных установок, открытых водоемов, источников технологических избытков тепла, где невозможно замкнуть контур теплоносителя. Высокая рекуперация важна, когда в сети теплоснабжения расчет осуществляется только по расходу воды и значению температуры прямой воды. Для теплообменников «воздух - воздух» это использование тепла вытяжного воздуха, который сразу после теплообмена уходит во внешнюю среду. Другой предельный случай реализуется, когда теплоноситель оплачивается строго по отобранной от него энергии. Это можно назвать идеальным вариантом сети теплоснабжения. Тогда можно заявить, что такой параметр, как коэффициент рекуперации, не имеет вообще никакого значения. Хотя при ограничениях по обратной температуре носителя коэффициент рекуперации также обретает смысл. Отметим, что при некоторых условиях желателен более низкий коэффициент рекуперации оборудования.

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА РЕКУПЕРАЦИИ

Определение коэффициента рекуперации приводится во многих справочных пособиях (например, , ). Если теплом обмениваются две среды 1 и 2 (рис. 1),

которые имеют теплоемкости с 1 и с 2 (в Дж/кгxК) и массовые расходы g 1 и g 2 (в кг/с) соответственно, то коэффициент рекуперации теплообмена можно представить в виде двух эквивалентных соотношений:

= (с 1 g 1)(Т 1 - Т 1 0) / (сg) min (T 2 0 - T 1 0) = (с 2 g 2)(Т 2 0 - Т 2) / (сg) min (T 2 0 - T 1 0). (1)

В этом выражении Т 1 и Т 2 - конечные температуры этих двух сред, Т 1 0 и Т 2 0 - начальные, а (cg) min - минимальное из двух значений так называемого теплового эквивалента этих сред (Вт/К) при расходах g 1 и g 2 , (cg) min = min{(с 1 g 1), (с 2 g 2)}. Для расчета коэффициента можно использовать любое из выражений, поскольку их числители, каждый из которых выражает полную мощность теплообмена (2), равны.

W = (с 1 g 1)(Т 1 - Т 1 0) = (с 2 g 2)(Т 2 0 - Т 2). (2)

Второе равенство в (2) можно рассматривать как выражение закона сохранения энергии при теплообмене, который для тепловых процессов называется первым началом термодинамики. Можно заметить, что в любом из двух эквивалентных определений в (1) присутствуют только три из четырех температур обмена. Как было указано, значение приобретает значимость, когда один из теплоносителей сбрасывается после использования. Отсюда следует, что выбор из двух выражений в (1) можно всегда сделать так, чтобы именно конечная температура этого носителя была исключена из выражения для расчета. Приведем примеры.

а) Рекуперация тепла вытяжного воздуха

Известным примером теплообменника с высоким необходимым значением может служить рекуператор тепла вытяжного воздуха для подогрева приточного воздуха (рис. 2).

Если обозначить температуру вытяжного воздуха Т комн, уличного Т ул, а приточного после подогрева в рекуператоре Т пр, то, учитывая одинаковое значение теплоемкостей с двух воздушных потоков (они практически одинаковы, если пренебречь малыми зависимостями от влажности и температуры воздуха), можно получить хорошо известное выражение для:

G пр (Т пр - Т ул) / g min (T комн - T ул). (3)

В этой формуле gmin обозначает наименьший g min = min{g пр, g выт } из двух секундных расходов gпр приточного и gвыт вытяжного воздуха. Когда поток приточного воздуха не превышает поток вытяжного, формула (3) упрощается и приводится к виду = (Т пр - Т ул) / (T комн - T ул). Температура, которая не учитывается в формуле (3), - это температура Т’ вытяжного воздуха после прохождения теплообменника.

б) Рекуперация в воздушной завесе или произвольном нагревателе «вода - воздух»

Поскольку при всех возможных вариантах единственная температура, значение которой может быть несущественно, это температура обратной воды Т х, ее следует исключить из выражения для коэффициента рекуперации. Если обозначить температуру воздуха окружения воздушной завесы Т 0 , подогретого завесой воздуха - Т, а температуру поступающей в теплообменник горячей воды Т г, (рис. 3), для получим:

Сg(Т – Т 0) / (сg) min (T г – T 0). (4)

В этой формуле с - теплоемкость воздуха, g - секундный массовый воздушный расход.

Обозначение (сg) min - это наименьшее значение из воздушного сg и водяного с W G тепловых эквивалентов, с W - теплоемкость воды, G - секундный массовый расход воды: (сg) min = min{(сg), (с W G)}. Если расход воздуха относительно невелик и воздушный эквивалент не превышает водяной, формула также упрощается: = (Т – Т 0) / (T г – T 0).

ФИЗИЧЕСКИЙ СМЫСЛ КОЭФФИЦИЕНТА РЕКУПЕРАЦИИ

Можно предположить, что значение коэффициента рекуперации теплового аппарата это количественное выражение термодинамической эффективности передачи мощности. Известно, что для теплопередачи эта эффективность ограничена вторым началом термодинамики, которое также известно как закон неубывания энтропии.

Однако можно показать, что - это действительно термодинамическая эффективность в смысле неубывания энтропии только в случае равенства тепловых эквивалентов двух обменивающихся теплом сред. В общем случае неравенства эквивалентов максимально возможное теоретическое значение = 1 обусловлено постулатом Клаузиуса, который сформулирован так: «Тепло не может передаваться от более холодного к более теплому телу без других изменений в то же время, связанных с этой передачей». В этом определении под другими изменениями подразумевается работа, которая совершается над системой, например, при обратном цикле Карно, на основе которого работают кондиционеры. Учитывая, что насосы и вентиляторы при теплообмене с такими носителями, как вода, воздух и другими, производят над ними ничтожно малую работу по сравнению с энергиями обмена теплом, можно считать, что при таком теплообмене постулат Клаузиуса выполняется с высокой степенью точности.

Хотя принято считать, что и постулат Клаузиуса и принцип неубывания энтропии - это всего лишь разные по форме выражения формулировки второго начала термодинамики для замкнутых систем, это не так. Чтобы опровергнуть их эквивалентность покажем, что они могут приводить в общем случае к различным ограничениям при теплообмене. Рассмотрим рекуператор «воздух - воздух» в случае равных тепловых эквивалентов двух обменивающихся сред, что при равенстве теплоемкостей подразумевает равенство массовых расходов двух воздушных потоков, и = (Т пр - Т ул) / (T комн - T ул). Пусть для определенности комнатная температура T комн = 20 о С, а уличная T ул = 0 о С. Если полностью отвлечься от скрытой теплоты воздуха, которая обусловлена его влажностью, то, как следует из (3), температура приточного воздуха Т пр = 16 о С соответствует коэффициенту рекуперации = 0,8, а при Т пр = 20 о С достигнет значения 1. (Температуры выбрасываемого на улицу в этих случаях воздуха Т’ будут соответственно 4 о С и 0 о С). Покажем, что именно = 1 для этого случая есть максимум. Ведь даже если приточный воздух имел температуру Т пр = 24 о С, а выбрасываемый на улицу Т’ = –4 о С, то первое начало термодинамики (закон сохранения энергии) не было бы нарушено. Уличному воздуху ежесекундно будет передаваться Е = сg·24 о С Джоулей энергии и столько же забираться у комнатного, а при этом будет равно 1,2, или 120%. Однако такая передача тепла невозможна именно вследствие того, что энтропия системы при этом уменьшится, что запрещено вторым началом термодинамики.

Действительно, по определению энтропии S, ее изменение связанно с изменением полной энергии газа Q соотношением dS = dQ/T (температура измеряется в Кельвинах), а учитывая, что при постоянном давлении газа dQ = mcdT, m - масса газа, с (или как ее часто обозначают с р) - теплоемкость при постоянном давлении, dS = mc · dT/T. Таким образом, S = mc · ln(T 2 / Т 1), где Т 1 и Т 2 начальная и конечная температуры газа. В обозначениях формулы (3) для секундного изменения энтропии приточного воздуха получим Sпр = сg ln(Tпр / Tул), если уличный воздух нагревается, оно положительно. Для изменения энтропии вытяжного воздуха Sвыт = с g · ln(T / Tкомн). Изменение энтропии всей системы за 1 секунду:

S = S пр + S выт = сg(ln(T пр / T ул) + ln(T’ / T комн)). (5)

Для всех случаев будем считать Т ул = 273К, Т комн = 293К. Для = 0,8 из (3), Т пр = 289К и из (2) Т’ = 277К, что позволит рассчитать общее изменение энтропии S =0,8 = 8 10 –4 cg. При = 1 аналогично получим Т пр = 293К и Т’ = 273К, и энтропия, как и следует ожидать, сохраняется S =1 = 0. Гипотетическому случаю = 1,2 соответствуют Т пр = 297К и Т’ = 269К, и расчет демонстрирует уменьшение энтропии: S =1,2 = –1,2 10 –4 cg. Этот расчет можно считать обоснованием невозможности этого процесса c = 1,2 в частности, и вообще для любого > 1 также из-за S < 0.

Итак, при расходах, которые обеспечивают равные тепловые эквиваленты двух сред (для одинаковых сред это соответствует равным расходам), коэффициент рекуперации определяет эффективность обмена в том смысле, что = 1 определяет предельный случай сохранения энтропии. Постулат Клаузиуса и принцип неубывания энтропии для такого случая эквивалентны.

Теперь рассмотрим для теплообмена «воздух - воздух» неравные воздушные расходы. Пусть, например, массовый расход приточного воздуха 2g, а вытяжного - g. Для изменения энтропии при таких расходах получим:

S = S пр + S выт = 2с · g ln(T пр / T ул) + с · g ln(T’ / T комн). (6)

Для = 1 при тех же начальных температурах Т ул = 273К и Т комн = 293К, используя (3), получим Т пр = 283К, так как g пр / g min = 2. Затем из закона сохранения энергии (2) получим значение Т’ = 273К. Если подставить эти значения температур в (6), то для полного изменения энтропии получим S = 0,00125сg > 0. То есть даже при самом благоприятном случае с = 1 процесс становится термодинамически неоптимален, он происходит с увеличением энтропии и, как следствие этого, в отличие от подслучая с равными расходами, всегда необратим.

Чтобы оценить масштаб этого увеличения, найдем коэффициент рекуперации для уже рассмотренного выше обмена равных расходов, чтобы в результате этого обмена была произведена такая же величина энтропии, как и для расходов, различающихся в 2 раза при = 1. Другими словами, оценим термодинамическую неоптимальность обмена разных расходов при идеальных условиях. Прежде всего само изменение энтропии мало о чем говорит, намного информативнее рассмотреть отношение S / Е изменения энтропии к переданной теплообменом энергии. Учитывая, что в вышеприведенном примере, когда энтропия возрастает на S = 0,00125сg, переданная энергия Е = сg пр (Т пр - Т ул) = 2с g 10К. Таким образом отношение S / Е = 6,25 10 –5 К -1 . Нетрудно убедиться, что к такому же «качеству» обмена при равных потоках приводит коэффициент рекуперации = 0,75026… Действительно, при тех же начальных температурах Т ул = 273К и Т комн = 293К и равных потоках этому коэффициенту соответствуют температуры Т пр = 288К и Т’ = 278К. Используя (5), получим изменение энтропии S = 0,000937сg и учитывая, что E = сg(T пр - T ул) = сg 15К, получим S / Е = 6,25 10 –5 К -1 . Итак, по термодинамическому качеству теплообмен при = 1 и при вдвое различающихся потоках соответствует теплообмену при = 0,75026… при одинаковых потоках.

Можно задаться еще одним вопросом: какими должны быть гипотетические температуры обмена с разными расходами, чтобы этот воображаемый процесс произошел без увеличения энтропии?

Для = 1,32 при тех же начальных температурах Т ул = 273К и Т комн = 293К, используя (3), получим Т пр = 286,2К и из закона сохранения энергии (2) Т’ = 266,6К. Если подставить эти значения в (6), то для полного изменения энтропии получим сg(2ln(286,2 / 273) + ln(266,6 / 293)) 0. Закон сохранения энергии и закон неубывания энтропии для этих значений температур выполняются, и все же обмен невозможен по причине того, что Т’ = 266,6К не принадлежит начальному интервалу температур. Это прямо нарушало бы постулат Клаузиуса, передавая энергию от более холодной среды к нагретой. Следовательно, этот процесс невозможен, как невозможны и другие не только с сохранением энтропии, но даже и с ее увеличением, когда конечные температуры любой из сред выходят за пределы начального интервала температур (Т ул, Т комн).

При расходах, которые обеспечивают неравные тепловые эквиваленты сред обмена, процесс теплопередачи принципиально необратим и проходит с увеличением энтропии системы даже в случае наиболее эффективного теплообмена. Эти рассуждения справедливы и для двух сред разных теплоемкостей, важно лишь то, совпадают или нет тепловые эквиваленты этих сред.

ПАРАДОКС МИНИМАЛЬНОГО КАЧЕСТВА ТЕПЛООБМЕНА С КОЭФФИЦИЕНТОМ РЕКУПЕРАЦИИ 1/2

В этом пункте рассмотрим три случая теплообмена с коэффициентами рекуперации 0, 1/2 и 1 соответственно. Пусть через теплообменники пропускаются равные потоки обменивающихся теплом сред равных теплоемкостей с некоторыми различными начальными температурами Т 1 0 и Т 2 0 . При коэффициенте рекуперации 1 две среды просто обмениваются значениями температур и конечные температуры зеркально повторяют начальные Т 1 = Т 2 0 и Т 2 = Т 1 0 . Очевидно, что энтропия при этом не изменяется S = 0, потому что на выходе те же среды тех же температур, как и на входе. При коэффициенте рекуперации 1/2 конечные температуры обеих сред будут равны среднему арифметическому значению начальных температур: Т 1 = Т 2 = 1/2 (Т 1 0 + Т 2 0). Произойдет необратимый процесс выравнивания температуры, а это равносильно росту энтропии S > 0. При коэффициенте рекуперации 0 теплообмен отсутствует. То есть Т 1 = Т 1 0 и Т 2 = Т 2 0 , и энтропия конечного состояния не изменится, что аналогично конечному состоянию системы с коэффициентом рекуперации, равным 1. Как состояние с = 1 тождественно состоянию с = 0, так же по аналогии можно показать, что состояние = 0,9 тождественно состоянию с = 0,1 и т. д. При этом состоянию с = 0,5 будет соответствовать максимальное увеличение энтропии из всех возможных коэффициентов. По-видимому, = 0,5 соответствует теплообмену минимального качества.

Конечно же, это не так. Объяснение парадокса следует начать с того, что теплообмен есть обмен энергией. Если энтропия в результате теплообмена увеличилась на некоторую величину, то качество теплообмена будет различаться в зависимости от того, была ли при этом передана теплота 1 Дж или 10 Дж. Правильнее рассматривать не абсолютное изменение энтропии S (фактически ее выработку в теплообменнике), а отношение изменения энтропии к переданной при этом энергии E. Очевидно, что для различных наборов температур можно подсчитать эти величины для = 0,5. Сложнее подсчитать это отношение для = 0, ведь это неопределенность вида 0/0. Однако несложно взять передел отношения в 0, который в практическом плане можно получить, взяв это отношение при очень малых значениях, например, 0,0001. В таблицах 1 и 2 представим эти значения для различных начальных условий по температуре.



При любых значениях и при бытовых интервалах разброса температур Т ул и Т комн (будем считать, что Т комн / Т ул x

S / E (1 / Т ул - 1 / Т комн)(1 -). (7)

Действительно, если обозначить Т комн = Т ул (1 + х), 0 < x

На графике 1 покажем эту зависимость для температур Т ул = 300К Т комн = 380К.



Это кривая не является прямой линией, определяемой приближением (7), хотя достаточно близка к ней, так что на графике они неразличимы. Формула (7) показывает, что качество теплообмена минимально именно при = 0. Сделаем еще одну оценку масштаба S / E. В примере, приведенном в , рассматривается соединение двух тепловых резервуаров с температурами Т 1 и Т 2 (Т 1 < T 2) теплопроводящим стержнем. Показано, что в стержне на единицу переданной энергии вырабатывается энтропия 1/Т 1 –1/Т 2 . Это соответствует именно минимальному качеству теплообмена при рекуперации с = 0. Интересное наблюдение заключается в том, что по физическому смыслу приведенный пример со стержнем интуитивно подобен теплообмену с = 1/2 , поскольку в обоих случаях происходит выравнивание температуры к среднему значению. Однако формулы демонстрируют, что он эквивалентен именно случаю теплообмена с = 0, то есть теплообмену с наиболее низким качеством из всех возможных. Без вывода укажем, что это же минимальное качество теплообмена S / E = 1 / Т 1 0 –1 / Т 2 0 в точности реализуется для -> 0 и при произвольном соотношении расходов теплоносителей.

ИЗМЕНЕНИЕ КАЧЕСТВА ТЕПЛООБМЕНА ПРИ РАЗЛИЧАЮЩИХСЯ РАСХОДАХ ТЕПЛОНОСИТЕЛЕЙ

Будем считать, что расходы теплоносителей различаются в n раз, а теплообмен происходит с максимально возможным качеством (= 1). Какому качеству теплообмена с равными расходами это будет соответствовать? Для ответа на этот вопрос посмотрим, как ведет себя величина S / E при = 1 для различных соотношений расходов. Для разницы расходов n = 2 это соответствие уже было подсчитано в 3 пункте: = 1 n=2 соответствует = 0,75026… при одинаковых потоках. В таблице 3 для набора температур 300К и 350К представим относительное изменение энтропии при равных расходах теплоносителей одинаковой теплоемкости для различных значений.



В таблице 4 представим также относительное изменение энтропии для различных соотношений расходов n только при максимально возможной эффективности теплопередачи (= 1) и соответствующие эффективности, приводящие к такому же качеству для равных расходов.



Представим полученную зависимость (n) на графике 2.



При бесконечной разнице расходов стремится к конечному пределу 0,46745… Можно показать, что это универсальная зависимость. Она справедлива при любых начальных температурах для любых носителей, если вместо соотношения расходов подразумевать соотношение тепловых эквивалентов. Ее также можно приблизить гиперболой, которая обозначена на графике 3 линией синего цвета:



‘(n) 0,4675+ 0,5325/n. (8)

Линией красного цвета обозначена точная зависимость (n):

Если неравные расходы реализуются при обмене с произвольным n>1 , то термодинамическая эффективность в смысле производства относительной энтропии уменьшается. Ее оценку сверху приведем без вывода:

Это соотношение стремится к точному равенству при n>1, близких к 0 или 1, а при промежуточных значениях не превышает абсолютной погрешности в несколько процентов.

Окончание статьи будет представлено в одном из следующих номеров журнала «МИР КЛИМАТА». На примерах реальных теплообменных блоков найдем значения коэффициентов рекуперации и покажем, насколько они определяются характеристиками блока, а насколько расходами теплоносителей.

ЛИТЕРАТУРА

  1. Пухов А. воздуха. Интерпретация опытных данных. // Мир климата. 2013. № 80. С. 110.
  2. Пухов А. В. Мощность тепловой завесы при произвольных расходах теплоносителя и воздуха. Инварианты процесса теплопередачи. // Мир климата. 2014. № 83. С. 202.
  3. Кейс В. М., Лондон А. Л. Компактные теплообменники. . М.: Энергия, 1967. С. 23.
  4. Уонг Х. Основные формулы и данные по теплообмену для инженеров. . М.: Атомиздат, 1979. С. 138.
  5. Кадомцев Б. Б. Динамика и информация // Успехи физических наук. Т. 164. 1994. № 5, май. С. 453.

Пухов Алексей Вячеславович,
технический директор
компании «Тропик Лайн»

При постройке дома необходимо выбрать и установить систему для рекуперации тепла в системах вентиляции. Существует несколько модификаций вентиляционного оснащения, которое выбирают в зависимости от его производителя. Оборудование природного импульса включает в себя нагнетательные клапаны для стен и окон, обеспечивающие поступление свежего воздуха в комнаты. Для удаления запахов из туалетных и ванных комнат, а также из кухонь устанавливают вытяжные воздуховоды.

Воздухообмен получается из-за разницы температур в комнате и за её пределами. В летнее время температуры выравниваются как внутри, так и снаружи комнат. То есть воздухообмен приостанавливается. В зимний период эффект проявляется более оперативно, но при этом потребуется больше энергозатрат для нагрева холодного уличного воздуха.

Составная вытяжка является системой с принудительной вентиляцией и с естественной циркуляцией воздуха. Недостатками являются:

  • слабый воздухообмен в доме.

  • К преимуществам можно отнести невысокую цену и отсутствие внешних природных факторов. Но при этом по качеству и функциональности аэрация не может считаться полноценной вентиляцией.

    Для обеспечения комфортных условий в новых жилых домах устанавливают универсальные системы вынужденной аэрации. Системы с рекуператором обеспечивают поступление свежего воздуха нормальной температуры с одновременным удалением отработанного воздуха из помещений. Вместе с этим происходит теплоотвод из нагнетательного потока.

    Экономия тепловой энергии с помощью приточно-вытяжной вентиляции с рекуператором // FORUMHOUSE

    В зависимости от типов рекуператоров и размеров помещений, в которых установлена вентиляция, происходит улучшение микроклимата более или менее эффективно. Но даже при установленной рекуперации при коэффициенте полезного действия всего лишь 30% экономия энергоресурсов будет значительной, а также происходит улучшение общего микроклимата в комнатах. Но имеются у теплообменников и недостатки:

    • увеличение потребления электроэнергии;
    • выделение конденсата, а зимой возникает обледенение, что может привести к поломке рекуператора;
    • сильный шум при работе, доставляющий большие неудобства.

    Теплообменные аппараты или теплоутилизаторы в системах вентиляции с усиленной теплошумоизоляцией работают очень тихо.

    Рекуператоры направленного движения теплоносителей предполагают вентиляцию и утилизацию тёплого отработанного воздуха. Аппарат осуществляет перемещение воздуха в двух направлениях с одинаковой скоростью. С теплоутилизаторами повышается комфортность жизни в домах.

    При этом значительно снижаются расходы на отопление и вентиляцию, соединяя оба серьёзных процесса в один. Такие аппараты можно использовать как в жилых, так и в производственных помещениях. Таким образом, экономия денежных средств составит приблизительно от тридцати до семидесяти процентов. Теплоутилизаторы можно разделить на две группы: теплообменники простого действия и тепловые насосы для увеличения запаса утилизируемой теплоты. Теплообменники можно использовать лишь в тех случаях, когда ресурсы источников больше ресурсов микроклимата, которому передаётся теплоэнергия.

    Система вентиляции квартиры с рекуператором Ecoluxe EC-900H3.

    Устройства, передающие тепло от источников к потребителям при помощи промежуточных рабочих тел, например, жидкостей, циркулирующих в замкнутых контурах, состоящих из циркуляционных насосов, трубопроводов и теплообменников, находящихся в нагреваемых и охлаждаемых камерах, называются рекуператорами с промежуточными теплоносителями . Такое оборудование широко применяется в разных теплообменниках и циркуляционных насосах при больших расстояниях между источником и потребителем тепла.

    Этот принцип используется в разветвлённой системе утилизации тепла и энергопотребителей с разными характеристиками. Работа теплоутилизатора с промежуточным теплоносителем состоит в том, что процесс в нём протекает в диапазоне водяного пара с изменением агрегатного состояния при постоянной температуре, давлении и объёме. Эксплуатация утилизаторов с тепловыми насосами отличается тем, что движение рабочей жидкости в них производится компрессором.

    Эффективность рекуператора труба в трубе осенью. +6гр.Ц. на улице.

    Аппараты смешанного действия

    Для утилизации и для согревания приточного воздуха применяют обменники рекуператорного или контактного типа . Могут также устанавливаться аппараты смешанного действия, то есть один - рекуператорного действия, а второй - контактного. Желательно устанавливать промежуточные теплоносители безвредные, недорогие, не вызывающие коррозию в трубопроводах и теплообменниках. До недавнего времени в роли промежуточных теплоносителей выступали только вода или водные гликоли.


    В настоящий момент их функции успешно выполняет холодильный агрегат, который работает как тепловой насос в комбинации с рекуператором. Теплообменники располагаются в приточных и вытяжных воздуховодах, а при помощи компрессора осуществляется циркуляция фреона, потоки которого переносят тепло из вытяжного воздушного потока в приточный и обратно. Всё зависит от времени года. Такая система состоит из двух и более , которые объединяет один холодильный контур, что обеспечивает синхронную работу установок в разных режимах.

    Особенности пластинчатой и роторной конструкций

    Самая простая конструкция у пластинчатого рекуператора. Основой такого теплообменника является герметическая камера с параллельными воздуховодами . Его каналы разделяются стальными или алюминиевыми теплопроводными пластинками. Недостатком этой модели является образование конденсата в вытяжных каналах и появление ледяной корки в зимнее время. При размораживании оборудования поступающий воздух идёт на теплообменник, а тёплые исходящие воздушные массы способствуют растапливанию льда на пластинах. Для предотвращения подобных ситуаций предпочтительнее использовать пластины из алюминиевой фольги, пластика или целлюлозы.

    Роторные рекуператоры являются самыми высокоэффективными аппаратами и представляют собой цилиндры с гофрированными металлическими прослойками. При вращении барабанной установки в каждую секцию входит тёплый или холодный поток воздуха. Так как коэффициент полезного действия обуславливается темпом вращения ротора, таким аппаратом возможно управлять.


    К достоинствам можно отнести возвращение тепла приблизительно 90%, экономичное расходование электричества, увлажнение воздуха, кратчайшие сроки окупаемости. Чтобы рассчитать эффективность рекуператора, необходимо измерить температуру воздуха и вычислить энтальпию всей системы по формуле: H = U + PV (U - внутренняя энергия; P - давление в системе; V - объём системы).

    Электродвигатели предназначены для приведения в движение различных механизмов, но после завершения движения механизм необходимо остановить. Для этого можно использовать тоже электрическую машину и метод рекуперации. О том, что такое рекуперация электроэнергии, рассказывается в этой статье.

    Что такое рекуперация

    Название этого процесса происходит от латинского слова “recuperatio”, которое переводится как “обратное получение”. Это возврат части израсходованной энергии или материалов для повторного использования.

    Этот процесс широко используется в электротранспорте, особенно работающем на аккумуляторах. При движении под уклон и во время торможения системы рекуперации возвращает кинетическую энергию движения обратно в аккумулятор, подзаряжая их. Это позволяет проехать без подзарядки большее расстояние.

    Рекуперативное торможение

    Один из видов торможения – это рекуперативное. При этом скорость вращения электродвигателя больше, чем заданная параметрами сети: напряжением на якоре и обмотке возбуждения в двигателях постоянного тока или частотой питающего напряжения в синхронных или асинхронных двигателях. При этом электродвигатель переходит в режим генератора, а выработанную энергию отдаёт обратно в сеть.

    Основным достоинством рекуператора является экономия электроэнергии. Это особенно заметно при движении по городу с постоянно изменяющейся скоростью, пригородном электротранспорте и метрополитене с большим количеством остановок и торможением перед ними.

    Кроме достоинств, рекуперация имеет недостатки:

    • невозможность полной остановки транспорта;
    • медленная остановка при малых скоростях;
    • отсутствие тормозного усилия на стоянке.

    Для компенсации этих недостатков на транспортных средствах устанавливается дополнительная система механических тормозов.

    Как работает система рекуперации

    Для обеспечения работы эта система должна обеспечивать питание электродвигателя от сети и возврат энергии во время торможения. Проще всего это осуществляется в городском электротранспорте, а также в старых электромобилях, оснащенных свинцовыми аккумуляторами, электродвигателями постоянного тока и контакторами, – при переходе на пониженную передачу при высокой скорости режим возврата энергии включается автоматически.

    В современном транспорте вместо контакторов используется ШИМ-контроллер. Это устройство позволяет возвращать энергию как в сеть постоянного, так и переменного тока. При работе оно работает как выпрямитель, а во время торможения определяет частоту и фазу сети, создавая обратный ток.

    Интересно. При динамическом торможении электродвигателей постоянного тока они так же переходят в режим генератора, но вырабатывающаяся энергия не возвращается в сеть, а рассеивается на добавочном сопротивлении.

    Силовой спуск

    Кроме торможения, рекуператор используется для уменьшения скорости при опускании грузов грузоподъёмными механизмами и во время движения вниз по наклонной дороге электротранспорта. Это позволяет не использовать при этом изнашиваемый механический тормоз.

    Применение рекуперации в транспорте

    Этот метод торможения используется много лет. В зависимости от вида транспорта, его применение имеет свои особенности.

    В электромобилях и электровелосипедах

    При движении по дороге, а тем более, по бездорожью электропривод почти всё время работает в тяговом режиме, а перед остановкой или перекрёстком – “накатом”. Остановка производится, используя механические тормоза из-за того, что рекуперация при малых скоростях неэффективна.

    Кроме того, КПД аккумуляторов в цикле “заряд-разряд” далёк от 100%. Поэтому, хотя такие системы и устанавливаются на электромобили, большую экономию заряда они не обеспечивают.

    На железной дороге

    Рекуперация в электровозах осуществляется тяговыми электродвигателями. При этом они включаются в режиме генератора, преобразующего кинетическую энергию поезда в электроэнергию. Эта энергия отдаётся обратно в сеть, в отличие от реостатного торможения, вызывающего нагрев реостатов.

    Рекуперация используется также при длительном спуске по склону для поддержания постоянной скорости. Этот метод позволяет экономить электроэнергию, которая отдается обратно в сеть и используется другими поездами.

    Раньше этой системой оборудовались только локомотивы, работающие от сети постоянного тока. В аппаратах, работающих от сети переменного тока, есть сложность с синхронизацией частоты отданной энергии с частотой сети. Сейчас эта проблема решается при помощи тиристорных преобразователей.

    В метро

    В метрополитене во время движения поездов происходит постоянный разгон и торможение вагонов. Поэтому рекуперация энергии даёт большой экономический эффект. Он достигает максимума, если это происходит одновременно в разных поездах на одной станции. Это учитывается при составлении расписания.

    В городском общественном транспорте

    В городском электротранспорте эта система устанавливается практически во всех моделях. Она используется в качестве основной до скорости 1-2 км/ч, после чего становится неэффективной, и вместо неё включается стояночный тормоз.

    В Формуле-1

    Начиная с 2009 года, в некоторых машинах устанавливается система рекуперации. В этом году такие устройства ещё не давали ощутимого превосходства.

    В 2010 году такие системы не использовались. Их установка с ограничением на мощность и объём рекуперированной энергии возобновилась в 2011 году.

    Торможение асинхронных двигателей

    Снижение скорости асинхронных электродвигателей осуществляется тремя способами:

    • рекуперация;
    • противовключение;
    • динамическое.

    Рекуперативное торможение асинхронного двигателя

    Рекуперация асинхронных двигателей возможна в трёх случаях:

    • Изменение частоты питающего напряжения. Возможно при питании электродвигателя от преобразователя частоты. Для перехода в режим торможения частота уменьшается так, чтобы скорость вращения ротора оказалась больше синхронной;
    • Переключением обмоток и изменением числа полюсов. Возможно только в двух,- и многоскоростных электродвигателях, в которых несколько скоростей предусмотрены конструктивно;
    • Силовой спуск. Применяется в грузоподъёмных механизмах. В этих аппаратах устанавливаются электродвигатели с фазным ротором, регулировка скорости в которых осуществляется изменением величины сопротивления, подключаемого к обмоткам ротора.

    В любом случае при торможении ротор начинает обгонять поле статора, скольжение становится больше 1, и электромашина начинает работать как генератор, отдавая энергию в сеть.

    Противовключение

    Режим противовключения осуществляется переключением двух фаз, питающих электромашину, между собой и включением вращения аппарата в обратную сторону.

    Возможен вариант включения при противовключении добавочных сопротивлений в цепь статора или обмоток фазного ротора. Это уменьшает ток и тормозной момент.

    Важно! На практике этот способ применяется редко из-за превышения токов в 8-10 раз выше номинальных (за исключением двигателей с фазным ротором). Кроме того, аппарат необходимо вовремя отключить, иначе он начнёт вращаться в обратную сторону.

    Динамическое торможение асинхронного двигателя

    Этот метод осуществляется подачей в обмотку статора постоянного напряжения. Для обеспечения безаварийной работы электромашины ток торможения не должен превышать 4-5 токов холостого хода. Это достигается включением в цепь статора дополнительного сопротивления или использованием понижающего трансформатора.

    Постоянный ток, протекающий в обмотках статора, создаёт магнитное поле. При пересечении его в обмотках ротора наводится ЭДС, и протекает ток. Выделившаяся мощность создаёт тормозной момент, сила которого тем больше, чем выше скорость вращения электромашины.

    Фактически асинхронный электродвигатель в режиме динамического торможения превращается в генератор постоянного тока , выходные клеммы которого закорочены (в машине с короткозамкнутым ротором) или включенные на добавочное сопротивление (электромашина с фазным ротором).

    Рекуперация в электрических машинах – это вид торможения, позволяющий сэкономить электроэнергию и избежать износа механических тормозов.

    Видео

    Любое закрытое помещение нуждается в ежедневном проветривании, но иногда этого бывает недостаточно для создания комфортного и приятного микроклимата. В холодное время года, когда открыты окна в режиме проветривания, быстро уходит тепло, а это приводит к лишним затратам на отопление. В летнее время года многие пользуются кондиционерами, но вместе с охлажденным проникает и горячий воздух с улицы.

    Чтобы уравновесить температуру и сделать воздух более свежим, придумано такое устройство, как рекуператор воздуха. В зимнее время оно позволяет не потерять комнатное тепло, а в летнюю жару не дает проникнуть в помещение горячему воздуху.

    Что такое рекуператор?

    В переводе с латинского, слово рекуператор означает - обратное получение или возвращение , касательно воздуха подразумевается возврат тепловой энергии, которая уносится с воздухом через систему вентиляции. Такое устройство, как рекуператор воздуха справляется с задачей вентиляции, уравновешивания двух воздушных потоков.

    Принцип работы устройства очень простой, из-за разности температуры происходит теплообмен, за счет этого температура воздуха выравнивается. В рекуператоре есть теплообменник с двумя камерами, они пропускают через себя вытяжной и приточный потоки воздуха. Накопленный конденсат, который образуется из-за разности температуры, автоматически удаляется из рекуператора.

    Система рекуперации позволяет не только вентилировать воздух в помещении, она значительно экономит расходы на отопление, поскольку эффективно сокращает потери тепла. Рекуператор способен сохранить более 2/3 уходящего из помещения тепла, а это значит, что устройство вторично использует тепловую энергию в одном технологическом цикле.

    Классификация устройств

    Рекуператоры отличаются схемами движения теплоносителей и по конструкции, а также по своему назначению. Есть несколько типов рекуператоров?

    1. Пластинчатые
    2. Роторные
    3. Водные
    4. Устройства, которые можно размещать на крыше.

    Пластинчатые рекуператоры

    Они считаются самыми распространенными, поскольку цена их невысокая, но они достаточно эффективные. Теплообменник, расположенный внутри устройства состоит из одной или нескольких пластин из меди или алюминия , пластика, очень прочной целлюлозы, они находятся в неподвижном состоянии. Воздух, попадая в устройство, проходит через ряд кассет и не смешивается, в процессе работы происходит одновременный процесс охлаждения и подогрева.

    Устройство очень компактное и надежное, оно практически не выходит из строя. Рекуператоры пластинчатого типа функционируют без потребления электроэнергии, что является немаловажным преимуществом. Среди недостатков устройства - в морозное погоды пластинчатая модель работать не может, влагообмен невозможен из-за обмерзания вытяжного устройства. Его вытяжные каналы собирают конденсат, который замерзает при минусовой температуре.

    Роторные рекуператоры

    Такое устройство работает от электроэнергии, его лопасти от одного или двух роторов должны вращаться во время работы , после чего происходит движение воздуха. Обычно они имеют цилиндрическую форму с пластинами, плотно установленными и барабаном внутри Вращать их заставляют потоки воздуха, вначале выходит комнатный воздух, а затем, меняя направление, воздух поступает обратно с улицы.

    Следует отметить, что роторные устройства имеют больше размеры, но КПД у них гораздо выше , чем у пластинчатых. Они отлично подходят для больших помещений - залов, торговых центров, больниц, ресторанов, поэтому для дома их покупать нецелесообразно. Среди минусов стоит отметить дорогое содержание таких устройств, поскольку они потребляют много электроэнергии, их непросто установить из-за громоздкости, стоят они дорого. Для монтажа необходима вентиляционная камера из-за больших размеров роторного рекуператора.

    Рекуператор водяной и размещаемый на крыше

    Рециркуляционные устройства переносят тепловую энергию в приточный теплообменник с помощью нескольких теплоносителей - воды, антифриза и др. Данное устройство очень похоже по производительности на пластинчатые рекуператоры, но отличается тем, что очень напоминает водяную систему отопления. Недостатком является невысокий КПД и частое техобслуживание.

    Рекуператор, который можно разместить на крыше экономит пространство в комнате. Его КПД составляет максимум 68% , он не нуждается в эксплуатационных затратах, все эти качества можно отнести к преимуществам такого типа. Минусом является то, что такой рекуператор сложно монтировать, для него необходима специальная система крепления. Чаще всего такой тип используют для объектов промышленного назначения.

    В любом жилом доме должна быть спроектирована и смонтирована естественная вентиляция, но на нее всегда влияют погодные условия, в зависимости от времени года, от этого зависит сила проветривания. Если зимой в мороз вентиляционная система работает эффективно, то в летнее время она практически не функционирует.

    Герметичность жилого дома можно снизить путем улучшения естественной вентиляции, но она будет давать ощутимый результат только в холодное время года. Здесь есть и отрицательная сторона, например, из жилого дома будет уходить тепло, а поступающий холодный воздух потребует дополнительного обогрева.

    Чтобы такой процесс вентиляции не был слишком затратным для хозяев дома, нужно использовать тепло воздуха, отводимое из помещения. Необходимо сделать принудительную циркуляцию воздуха. Для этого делается разводка сети приточных и вытяжных воздуховодов, затем установить вентиляторы. По ним будет подаваться воздух в отдельные помещения и такой процесс не будет связан с погодными условиями. Специально для этого устанавливается теплообменник в месте пересечения воздушных масс свежих и загрязненных.

    Что дает рекуператор воздуха?

    Система рекуперации позволяет свести к минимуму процент смешивания поступающего и вытягиваемого воздуха. Разделители, которые есть в устройстве, осуществляют это процесс. За счет передачи границе энергии потока происходит теплообмен, струи будут проходить параллельно либо перекрестно. Система рекуперации имеет много положительных характеристик .

    1. Специального типа решетки на входе воздушных потоков удерживают пыль, насекомых, пыльцу и даже бактерии с улицы.
    2. В помещение поступает очищенный воздух.
    3. Из помещения уходит загрязненный воздух, в котором могут быть вредные компоненты.
    4. Кроме циркуляции происходит очищение и утепление приточных струй.
    5. Способствует более крепкому и здоровому сну.

    Положительные свойства системы дают возможность применять ее в помещениях различного типа для создания более комфортных температурных условий. Очень часто они используются в промышленных помещениях, где необходима вентиляция большого пространства. В таких местах необходимо поддерживать постоянную температуру воздуха, с этой задачей справляются роторные рекуператоры, которые могут работать при температуре до +650 о С .

    Заключение

    Необходимый баланс свежего и чистого воздуха с нормальной влажностью сможет обеспечить система приточной и вытяжной вентиляции. Установив рекуператор можно решить многие проблемы, связанные также с экономией энергетических ресурсов.

    Выбирая для своего дома рекуператор воздуха, необходимо учитывать площадь жилого помещения, степень влажности в нем и назначение устройства. Обязательно стоит обратить внимание на стоимость устройства и возможность установки, его КПД, от которого будет зависеть качество вентиляции всего дома.

    Вам также будет интересно:

    Презентация:
    Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
    Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
    Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
    Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
    Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
    Лазанья с говядиной и тортильями
    Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
    Чечевица с рисом: рецепты и особенности приготовления
    Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...