Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Стабилизаторы с малым падением напряжения. Стабилизатор напряжения на мосфете

Последовательный стабилизатор напряжения непрерывного действия - Регулируемый, с малым падением напряжения

Регулируемый последовательный стабилизатор

Для регулировки выходного напряжения в предыдущей схеме в качестве стабилитрона можно применять интегральный элемент с регулируемым напряжением стабилизации (управляемый стабилитрон). Есть и другой вариант.

Вашему вниманию подборки материалов:

Стабилизатор с низким падением напряжения

Обе предыдущие схемы хорошо работают, если разница между входным и выходным напряжением позволяет сформировать нужное смещение на базе транзистора VT1. Для этого надо минимум несколько вольт. Иногда такое напряжение поддерживать нецелесообразно, например потому, что потери и нагрев силового транзистора пропорциональны этому напряжению. Тогда применяется следующая схема.

Она может работать, даже если разница входного и выходного напряжений составляет всего насколько десятых долей вольта, так как в ней это напряжение не участвует в формировании смещения. Смещение подается через транзистор VT2 с общего провода. Если напряжение на движке подстроечного резистора меньше напряжения стабилизации стабилитрона плюс напряжение насыщения перехода база-эмиттер VT3, то транзистор VT3 закрыт, транзистор VT2 открыт, транзистор VT1 открыт. Когда напряжение на движке резистора превышает сумму напряжения стабилизации стабилитрона и насыщения перехода база-эмиттер VT3, транзистор VT3 открывается и отводит ток от базы VT2. VT2 и VT3 закрываются.

[Напряжение стабилизации стабилитрона, В ] = - [Напряжение насыщения база-эмиттер VT3, В ]

= ([Минимально возможное входное напряжение, В ] - [Напряжение насыщения база-эмиттер VT2, В ]) * * [Минимально возможный коэффициент передачи тока транзистора VT2 ] /

[Сопротивление резистора R2, Ом ] = [Минимальное выходное напряжение, В ] * [Сопротивление резистора R1, Ом ] * [Минимально возможный коэффициент передачи тока транзистора VT3 ] / / 3

[Мощность транзистора VT1, Вт ] = ([Максимально возможное входное напряжение, В ] - [Минимальное выходное напряжение, В ]) * [Максимально возможный выходной ток, А ]

[Мощность транзистора VT2, Вт ] = [Максимально возможное входное напряжение, В ] * [Максимально возможный выходной ток, А ] / [Минимально возможный коэффициент передачи тока транзистора VT1 ]

На транзисторе VT3 и стабилитроне мощность практически не рассеивается.

Стабилизатор напряжения с малым минимальным падением напряжения

Один из важных параметров последовательных стабилизаторов напряжения (в том числе и микросхемных) - минимально допустимое напряжение между входом и выходом стабилизатора (ΔUмин) при максимальном токе нагрузки. Он показывает, при какой минимальной разности входного (Uвх) и выходного (Uвых) напряжений все параметры стабилизатора находятся в пределах нормы. К сожалению, не все радиолюбители обращают на него внимание, обычно их интересуют только выходное напряжение и максимальный выходной ток. Между тем этот параметр оказывает существенное влияние как на качество выходного напряжения, так и на КПД стабилизатора.

Например, у широко распространенных микросхемных стабилизаторов серии 1_М78хх (хх - число, равное напряжению стабилизации в вольтах) минимально допустимое напряжение дUмин= 2 В при токе 1 А. На практике это означает, что для стабилизатора на микросхеме LM7805 (Uвых = 5 В) напряжение Uвхмин должно быть не менее 7 В. Если амплитуда пульсаций на выходе выпрямителя достигает 1 В, то значение Uвхмин повышается до 8 В, а с учетом нестабильности сетевого напряжения в пределах ±10 % возрастает до 8,8 В. В результате КПД стабилизатора не превысит 57 %, а при большом выходном токе микросхема будет сильно нагреваться.

Возможный выход из положения - применение так называемых Low Dropout (с низким падением напряжения) микросхемных стабилизаторов, например, серии КР1158ЕНхх (ΔUмин = 0,6 В при токе 0,5 А) или LM1084 (Uмин= 1,3 В при токе 5 А). Но еще меньших значений Uмин можно добиться, если в качестве регулирующего элемента использовать мощный полевой транзистор. Именно о таком устройстве и пойдет речь далее.

Схема предлагаемого стабилизатора показана на рис. 1. Полевой транзистор VT1 включен в плюсовую линию питания. Применение прибора с n-каналом обусловлено результатами проведенных автором испытаний: оказалось, что такие транзисторы менее склонны к самовозбуждению и к тому же, как правило, сопротивление открытого канала у них меньше, чем у р-канальных. Управляет транзистором VT1 параллельный стабилизатор напряжения DA1. Для того чтобы полевой транзистор открылся, напряжение на его затворе должно быть как минимум на 2,5 В больше, чем на истоке. Поэтому необходим дополнительный источник с выходным напряжением, превышающим напряжение на стоке полевого транзистора именно на эту величину.

Такой источник - повышающий преобразователь напряжения - собран на микросхеме DD1. Логические элементы DD1.1, DD1.2 использованы в генераторе импульсов с частотой следования около 30 кГц, DD1.3, DD1.4 - буферные; диоды VD1, VD2 и конденсаторы СЗ, С4 образуют выпрямитель с удвоением напряжения, резистор R2 и конденсатор С5 - сглаживающий фильтр.

Конденсаторы С6, С7 обеспечивают устойчивую работу устройства. Выходное напряжение (его минимальное значение 2,5 В) устанавливают подстроечным резистором R4.

Лабораторные испытания макета устройства показали, что при токе нагрузки 3 А и снижении входного напряжения с 7 до 5,05 В выходное уменьшается с 5 до 4,95 В. Иными словами, при указанном токе минимальное падение напряжения ΔUмин не превышает 0,1 В. Это позволяет более полно использовать возможности первичного источника питания (выпрямителя) и повысить КПД стабилизатора напряжения.

Детали устройства монтируют на печатной плате (рис. 2) из односторонне фольгированного стеклотекстолита толщиной 1,5...2 мм. Постоянные резисторы - Р1-4, МЛТ, подстроечный - СПЗ-19а, конденсаторы С2, С6, С7 - керамические К10-17, остальные - оксидные импортные, например, серии ТК фирмы Jamicon. В стабилизаторе с выходным напряжением 3...6 В следует применять полевой транзистор с напряжением открывания не более 2,5 В. У таких транзисторов фирмы International Rectifier в маркировке, как правило, присутствует буква L (см. справочный листок "Мощные полевые переключательные транзисторы фирмы International Rectifier" в "Радио", 2001, № 5, с. 45). При токе нагрузки более 1,5...2 А необходимо использовать транзистор с сопротивлением открытого канала не более 0,02... 0,03 Ом.

Во избежание перегрева полевой транзистор закрепляют на теплоотводе, к нему же через изолирующую прокладку можно приклеить плату. Внешний вид смонтированной платы показан на рис. 3.

Выходное напряжение стабилизатора можно повысить, однако не следует забывать, что максимальное напряжение питания микросхемы К561ЛА7- 15 В, а предельное значение напряжения затвор-исток полевого транзистора в большинстве случаев не превышает 20 В.

Поэтому в подобном случае следует применить повышающий преобразователь, собранный по иной схеме (на элементной базе, допускающей более высокое напряжение питания), и ограничить напряжение на затворе полевого транзистора, подключив параллельно конденсатору С5 стабилитрон с соответствующим напряжением стабилизации. Если стабилизатор предполагается встроить в источник питания с понижающим трансформатором, то преобразователь напряжения (микросхему DD1, диоды VD1, VD2, резистор R1 и конденсаторы С2, СЗ) можно исключить, а "основной" выпрямитель на диодном мосте VD5 (рис. 4) дополнить удвоителем напряжения на диодах VD3, VD4 и конденсаторе С9 (нумерация элементов продолжает начатую на рис. 1).

Смотрите другие статьи раздела .

На основе мощных переключательных полевых транзисторов можно построить линейные стабилизаторы напряжения. Подобное устройство было ранее описано в . Немного изменив схему, как показано на рис. 1, можно улучшить параметры описанного стабилизатора, существенно (в 5…6 раз) уменьшив падение напряжения на регулирующем элементе, в качестве которого применен транзистор IRL2505L. Он имеет в открытом состоянии весьма малое сопротивление канала (0,008 Ом), обеспечивает ток до 74 А при температуре корпуса 100 °С, отличается высокой крутизной характеристики (59 А/В). Для управления им требуется небольшое напряжение на затворе (2,5…3 В). Предельное напряжение сток-исток - 55 В, затвор-исток - ±16 В, мощность, рассеиваемая транзистором, может достигать 200 Вт.

Подобно современным микросхемным стабилизаторам, предлагаемый модуль имеет три вывода: 1 - вход, 2 - общий, 3 - выход. В качестве управляющего элемента применена микросхема DA1 - параллельный стабилизатор напряжения КР142ЕН19 (TL431). Транзистор VT1 выполняет функцию согласующего элемента, а стабилитрон VD1 обеспечивает стабильное напряжение для его базовой цепи. Значение выходного напряжения можно рассчитать по формуле
Uвых=2,5(1+R5/R6).
Выходное напряжение регулируют, изменяя сопротивление резистора R6. Конденсаторы обеспечивают устойчивую работу стабилизатора. Устройство работает следующим образом. При увеличении выходного напряжения повышается напряжение на управляющем входе микросхемы DA1, в результате чего ток через нее увеличивается. Напряжение на резисторе R2 увеличивается, а ток через транзистор VT1 уменьшается. Соответственно напряжение затвор-исток транзистора VT2 уменьшается, вследствие чего сопротивление его канала возрастает. Поэтому выходное напряжение уменьшается, восстанавливаясь до прежнего значения.

Регулирующий полевой транзистор VT2 включен в минусовый провод, а управляющее напряжение поступает на него с плюсового провода. Благодаря такому решению стабилизатор способен обеспечить ток нагрузки 20…30 А, при этом входное напряжение может быть всего на 0,5 В больше выходного. Если предполагается использовать модуль при входном напряжении более 16 В, то транзистор VT2 необходимо защитить от пробоя с помощью маломощного стабилитрона с напряжением стабилизации 10…12 В, катод которого подключают к затвору, анод - к истоку.

В устройстве можно применить любой n-канальный полевой транзистор (VT2), подходящий по току и напряжению из списка, приведенного в , желательно выделенный желтым цветом. VT1 - КТ502, КТ3108, КТ361 с любыми буквенными индексами. Микросхему КР142ЕН19 (DA1) допустимо заменить на TL431. Конденсаторы - К10-17, резисторы - Р1-4, МЛТ, С2-33.
Схема подключения модуля стабилизатора приведена на рис. 2.

При большом токе нагрузки на транзисторе VT2 рассеивается большая мощность, поэтому необходим эффективный теплоотвод. Транзисторы этой серии с буквенными индексами L и S устанавливают на теплоотвод с помощью пайки. В авторском варианте в качестве теплоотвода и одновременно несущей конструкции применен корпус от неисправного транзистора КТ912, КП904. Этот корпус разобран, удалена его верхняя часть так, что осталась позолоченная керамическая шайба с кристаллом транзистора и выводами-стойками. Кристалл аккуратно удален, покрытие облужено, после чего к нему припаян транзистор VT2. К покрытию шайбы и выводам транзистора VT2 припаяна печатная плата из двусторонне фольгированного стеклотекстолита (рис. 3). Фольга на обратной стороне платы целиком сохранена и соединена с металлизацией шайбы (стоком транзистора VT2) После налаживания и проверки модуля стабилизатора плата приклеена к корпусу. Выводы 1 и 2 - площадки на печатной плате, а вывод 3 (сток транзистора VT2) - металлический вывод-стойка на керамической шайбе.

Если применить детали для поверхностного монтажа: микросхему TL431CD (рис. 4), транзистор VT1 КТ3129А-9, транзистор VT2 IRLR2905S, резисторы Р1-12, то часть их можно разместить на печатной плате, а другую часть - навесным монтажом непосредственно на керамической шайбе корпуса. Внешний вид собранного устройства показан на рис. 5. Модуль стабилизатора напряжения не имеет гальванической связи с основанием (винтом) корпуса, поэтому его можно непосредственно разместить на теплоотводе, даже если он соединен с общим проводом питаемого устройства.

Также допустимо использовать корпус от неисправных транзисторов серий КТ825, КТ827. В таком корпусе кристаллы транзистора прикреплены не к керамической, а к металлической шайбе. Именно к ней, предварительно удалив кристалл, припаивают транзистор VT2. Остальные детали устанавливают аналогично. Сток транзистора VT2 в этом случае соединен с корпусом, поэтому модуль можно непосредственно установить на теплоотвод, соединенный с минусовым проводом питания нагрузки.
Налаживание устройства сводится к установке требуемого выходного напряжения подстроечным резистором R6 и к проверке отсутствия самовозбуждения во всем интервале выходного тока. Если оно возникнет, его нужно устранить увеличением емкости конденсаторов.

ЛИТЕРАТУРА
1. Мощные полевые переключательные транзисторы фирмы International Rectifier. - Радио, 2001, № 5, с. 45.
2. Нечеев И. Стабилизатор напряжения на мощном полевом транзисторе. - Радио, 2003, № 8. с. 53, 54.

И. НЕЧАЕВ, г. Курск
“Радио” №2 2005г.

65 нанометров - следующая цель зеленоградского завода «Ангстрем-Т», которая будет стоить 300-350 миллионов евро. Заявку на получение льготного кредита под модернизацию технологий производства предприятие уже подало во Внешэкономбанк (ВЭБ), сообщили на этой неделе «Ведомости» со ссылкой на председателя совета директоров завода Леонида Реймана. Сейчас «Ангстрем-Т» готовится запустить линию производства микросхем с топологией 90нм. Выплаты по прошлому кредиту ВЭБа, на который она приобреталась, начнутся в середине 2017 года.

Пекин обвалил Уолл-стрит

Ключевые американские индексы отметили первые дни Нового года рекордным падением, миллиардер Джордж Сорос уже предупредил о том, что мир ждет повторение кризиса 2008 года.

Первый российский потребительский процесор Baikal-T1 ценой $60 запускают в массовое производство

Компания «Байкал Электроникс» в начале 2016 года обещает запустить в промышленное производство российский процессор Baikal-T1 стоимостью около $60. Устройства будут пользоваться спросом, если этот спрос создаст государство, говорят участники рынка.

МТС и Ericsson будут вместе разрабатывать и внедрять 5G в России

ПАО "Мобильные ТелеСистемы" и компания Ericsson заключили соглашения о сотрудничестве в области разработки и внедрения технологии 5G в России. В пилотных проектах, в том числе во время ЧМ-2018, МТС намерен протестировать разработки шведского вендора. В начале следующего года оператор начнет диалог с Минкомсвязи по вопросам сформирования технических требований к пятому поколению мобильной связи.

Сергей Чемезов: Ростех уже входит в десятку крупнейших машиностроительных корпораций мира

Глава Ростеха Сергей Чемезов в интервью РБК ответил на острые вопросы: о системе «Платон», проблемах и перспективах АВТОВАЗа, интересах Госкорпорации в фармбизнесе, рассказал о международном сотрудничестве в условиях санкционного давления, импортозамещении, реорганизации, стратегии развития и новых возможностях в сложное время.

Ростех "огражданивается" и покушается на лавры Samsung и General Electric

Набсовет Ростеха утвердил "Стратегию развития до 2025 года". Основные задачи – увеличить долю высокотехнологичной гражданской продукции и догнать General Electric и Samsung по ключевым финансовым показателям.

Вся современная радиоэлектронная аппаратура построена на элементах, чувствительных к питающему электричеству. От него зависит не только правильное функционирование, но и работоспособность схем в целом. Поэтому в первую очередь электронные устройства снабжают фиксированными стабилизаторами с малым падением напряжения. Они выполнены в виде интегральных микросхем, которые выпускают многие производители по всему миру.

Что такое стабилизатор напряжения с малым падением напряжения?

Под стабилизатором напряжения (СН) понимают такое устройство, основная задача которого состоит в поддержании на определенном неизменном уровне напряжения на нагрузке. Любой стабилизатор имеет определенную точность выдачи параметра, которая обусловлена типом схемы и компонентами, входящими в нее.

Внутренне СН выглядит подобно замкнутой системе, где в автоматическом режиме напряжение на выходе подстраивается пропорционально эталонному (опорному), которое генерирует специальный источник. Этот тип стабилизаторов именуют компенсационным. Регулирующим элементом (РЭ) в этом случае выступает транзистор - биполярник или полевик.

Элемент регулирования напряжения может работать в двух разных режимах (определяется схемой построения):

  • активном;
  • ключевом.

Первый режим подразумевает непрерывную работу РЭ, второй - работу в импульсном режиме.

Где применяют фиксированный стабилизатор?

Радиоэлектронная аппаратура современного поколения отличается мобильностью в глобальном масштабе. Системы питания устройств построены на использовании в основном химических источников тока. Задача разработчиков в этом случае состоит в получении стабилизаторов с небольшими габаритными параметрами и как можно меньшими потерями электричества на них.

Современные СН применяются в следующих системах:

  • средства мобильной связи;
  • компьютеры переносного типа;
  • элементы питания микроконтроллеров;
  • автономно работающие камеры слежения;
  • автономные охранные системы и датчики.

Для решения вопросов питания стационарной электроники применяют стабилизаторы напряжения с малым падением напряжения в корпусе с тремя выводами типа КТ (КТ-26, КТ-28-2 и др.). Их используют для создания простых схем:

  • зарядных устройств;
  • блоков питания бытовой электротехники;
  • измерительной аппаратуры;
  • систем связи;
  • спецоборудования.

Какими бывают СН фиксированного типа?

Все интегральные стабилизаторы (в состав которых входят и фиксированные) делят на две основных группы:

  • Стабилизаторы с минимально малым падением напряжения гибридного исполнения (ГИСН).
  • Микросхемы полупроводниковые (ИСН).

СН первой группы выполняют на интегральных микросхемах и полупроводниковых элементах бескорпусного типа. Все компоненты схемы размещают на подложке из диэлектрика, куда методом нанесения толстых или тонких пленок добавляют соединительные проводники и резисторы, а также элементы дискретные - переменные сопротивления, конденсаторы и др.

Конструктивно микросхемы представляют законченные устройства, выходное напряжение которых фиксировано. Это обычно стабилизаторы с малым падением напряжения на 5 вольт и до 15 В. Более мощные системы построены на мощных транзисторах бескорпусных и схеме управления (маломощной) на основе пленок. Схема может пропускать токи до 5 ампер.

ИСН микросхемы выполняют на одном кристалле, потому они имеют маленькие размеры и массу. По сравнению с предыдущими микросхемами они более надежны и дешевле в изготовлении, хотя по параметрам уступают ГИСН.

Линейные СН с тремя выводами относятся к ИСН. Если взять серию L78 или L79 (для положительных и отрицательных напряжений), то они делятся на микросхемы со:

  • Слабым током на выходе около 0.1 А (L78L**).
  • Средним значением тока, в районе 0.5 А (L78M**).
  • Сильноточные до 1.5 А (L78).

Принцип работы линейного стабилизатора с малым падением напряжения

Типовая структура стабилизатора состоит из:

  • Источника напряжения опорного.
  • Преобразователя (усилителя) сигнала ошибки.
  • Делителя сигнала и элемента регулирующего, собранных на двух резисторах.

Так как величина напряжения на выходе напрямую зависит от сопротивлений R1 и R2, то последние встраивают в микросхему и получается СН с фиксированным выходным напряжением.

Работа стабилизатора напряжения с малым падением напряжения основана на процессе сравнивания напряжения опорного с тем, которое поступает на выход. В зависимости от уровня несоответствия этих двух показателей усилитель ошибки воздействует на затвор силового транзистора на выходе, прикрывая либо открывая его переход. Таким образом, фактический уровень электричества на выходе стабилизатора будет мало отличаться от заявленного номинального.

Также в схеме присутствуют датчики защиты от перегрева и перегрузочных токов. Под воздействием этих датчиков у выходного транзистора полностью перекрывается канал, и он перестает пропускать ток. В режиме отключения микросхема потребляет всего 50 микроампер.

Схемы включения стабилизатора с малым падением напряжения

Интегральная микросхема-стабилизатор удобна тем, что имеет внутри все необходимые элементы. Установка ее на плату требует включения лишь фильтрующих конденсаторов. Последние призваны убрать помехи, приходящие от источника тока и нагрузки, как видно на рисунке.

Касательно СН серии 78xx и использовании танталовых либо керамических конденсаторов шунтирования входа и выхода, емкость последних должна быть в пределах до 2 мкФ (вход) и 1 мкФ (выход) при любых допустимых значениях напряжения и тока. Если применять алюминиевые конденсаторы, то их номинал не должен быть ниже 10 мкФ. Подключать элементы следует максимально близко к выводам микросхемы.

В случае когда нет в наличии стабилизатора напряжения с малым падением напряжения нужного номинала, можно увеличить номинал СН с меньшего на больший. За счет поднятия уровня электричества на общем выводе добиваются прироста его на такую же величину на нагрузке, как показано на схеме.

Преимущества и недостатки линейных и импульсных стабилизаторов

Интегральные микросхемы непрерывного действия (СН) имеют следующие преимущества:

  1. Реализованы в одном корпусе небольшого размера, что позволяет эффективно располагать их на рабочем пространстве печатной платы.
  2. Не требуют установки дополнительных регулирующих элементов.
  3. Обеспечивают хорошую стабилизацию выходного параметра.

К недостаткам можно отнести низкий КПД, не превышающий 60%, связанный с падением напряжения на встроенном регулирующем элементе. При большой мощности микросхемы необходимо применять радиатор охлаждения кристалла.

Более производительными считаются с малым падением напряжения на полевике, КПД которых приблизительно на уровне 85%. Достигается это благодаря режиму работы элемента регулирующего, при котором ток через него проходит импульсами.

К недостаткам схемы импульсного СН можно отнести:

  1. Сложность схематического исполнения.
  2. Наличие помех импульсного характера.
  3. Малую стабильность выходного параметра.

Некоторые схемы с использованием линейного стабилизатора напряжения

Кроме целевого использования микросхем в качестве СН, можно расширить область их применения. Некоторые варианты таких схем на базе интегральной микросхемы L7805.

Включение стабилизаторов в параллельном режиме

Чтобы увеличить ток нагрузки, СН включают параллельно друг к другу. Для обеспечения работоспособности такой схемы дополнительно в нее устанавливают резистор небольшого номинала между нагрузкой и выходом стабилизатора.

Стабилизатор тока на базе СН

Есть нагрузки, питание которых необходимо осуществлять постоянным (стабильным) током, например, светодиодная цепочка.

Схема регулирования оборотов вентилятора в компьютере

Регулятор этого типа построен таким образом, что при первоначальном включении на куллер поступает все 12 В (для его раскрутки). Далее по окончании заряда конденсатора C1 переменным резистором R2 можно будет регулировать величину напряжения.

Заключение

Собирая схему с применением стабилизатора напряжения с малым падением напряжения своими руками, важно учитывать, что некоторые типы микросхем (построенные на полевых транзисторах) нельзя паять обычным паяльником непосредственно от сети 220 В без заземления корпуса. Их статическое электричество может вывести электронный элемент из строя!

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...