Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Строение бактериальной клеточной стенки. Строение и химический состав бактериальной клетки

Размеры - от 1 до 15 мкм. Основные формы: 1) кокки (шаровидные), 2) бациллы (палочковидные), 3) вибрионы (изогнутые в виде запятой), 4) спириллы и спирохеты (спирально закрученные).

Формы бактерий:
1 - кокки; 2 - бациллы; 3 - вибрионы; 4-7 - спириллы и спирохеты.

Строение бактериальной клетки:
1 - цитоплазматическая мемб­рана; 2 - клеточ­ная стенка; 3 - слизис­тая кап­сула; 4 - цито­плазма; 5 - хромо­сомная ДНК; 6 - рибосомы; 7 - мезо­сома; 8 - фото­синтети­ческие мемб­раны; 9 - вклю­чения; 10 - жгу­тики; 11 - пили.

Бактериальная клетка ограничена оболочкой. Внутренний слой оболочки представлен цитоплазматической мембраной (1), над которой находится клеточная стенка (2); над клеточной стенкой у многих бактерий - слизистая капсула (3). Строение и функции цитоплазматической мембраны эукариотической и прокариотической клеток не отличаются. Мембрана может образовывать складки, называемые мезосомами (7). Они могут иметь разную форму (мешковидные, трубчатые, пластинчатые и др.).

На поверхности мезосом располагаются ферменты. Клеточная стенка толстая, плотная, жесткая, состоит из муреина (главный компонент) и других органических веществ. Муреин представляет собой правильную сеть из параллельных полисахаридных цепей, сшитых друг с другом короткими белковыми цепочками. В зависимости от особенностей строения клеточной стенки бактерии подразделяются на грамположительные (окрашиваются по Граму) и грамотрицательные (не окрашиваются). У грамотрицательных бактерий стенка тоньше, устроена сложнее и над муреиновым слоем снаружи имеется слой липидов. Внутреннее пространство заполнено цитоплазмой (4).

Генетический материал представлен кольцевыми молекулами ДНК. Эти ДНК можно условно разделить на «хромосомные» и плазмидные. «Хромосомная» ДНК (5) - одна, прикреплена к мембране, содержит несколько тысяч генов, в отличие от хромосомных ДНК эукариот она не линейная, не связана с белками. Зона, в которой расположена эта ДНК, называется нуклеоидом . Плазмиды - внехромосомные генетические элементы. Представляют собой небольшие кольцевые ДНК, не связаны с белками, не прикреплены к мембране, содержат небольшое число генов. Количество плазмид может быть различным. Наиболее изучены плазмиды, несущие информацию об устойчивости к лекарственным препаратам (R-фактор), принимающие участие в половом процессе (F-фактор). Плазмида, способная объединяться с хромосомой, называется эписомой .

В бактериальной клетке отсутствуют все мембранные органоиды, характерные для эукариотической клетки (митохондрии, пластиды, ЭПС, аппарат Гольджи, лизосомы).

В цитоплазме бактерий находятся рибосомы 70S-типа (6) и включения (9). Как правило, рибосомы собраны в полисомы. Каждая рибосома состоит из малой (30S) и большой субъединиц (50S). Функция рибосом: сборка полипептидной цепочки. Включения могут быть представлены глыбками крахмала, гликогена, волютина, липидными каплями.

У многих бактерий имеются жгутики (10) и пили (фимбрии) (11). Жгутики не ограничены мембраной, имеют волнистую форму и состоят из сферических субъединиц белка флагеллина. Эти субъединицы расположены по спирали и образуют полый цилиндр диаметром 10–20 нм. Жгутик прокариот по своей структуре напоминает одну из микротрубочек эукариотического жгутика. Количество и расположение жгутиков может быть различным. Пили - прямые нитевидные структуры на поверхности бактерий. Они тоньше и короче жгутиков. Представляют собой короткие полые цилиндры из белка пилина. Пили служат для прикрепления бактерий к субстрату и друг к другу. Во время конъюгации образуются особые F-пили, по которым осуществляется передача генетического материала от одной бактериальной клетки к другой.

Яндекс.ДиректВсе объявления

Спорообразование у бактерий - способ переживания неблагоприятных условий. Споры формируются обычно по одной внутри «материнской клетки» и называются эндоспорами. Споры обладают высокой устойчивостью к радиации, экстремальным температурам, высушиванию и другим факторам, вызывающим гибель вегетативных клеток.

Размножение. Бактерии размножаются бесполым способом - делением «материнской клетки» надвое. Перед делением происходит репликация ДНК.

Редко у бактерий наблюдается половой процесс, при котором происходит рекомбинация генетического материала. Следует подчеркнуть, что у бактерий никогда не образуются гаметы, не происходит слияние содержимого клеток, а имеет место передача ДНК от клетки-донора к клетке-реципиенту. Различают три способа передачи ДНК: конъюгация, трансформация, трансдукция.

Конъюгация - однонаправленный перенос F-плазмиды от клетки-донора в клетку-реципиента, контактирующих друг с другом. При этом бактерии соединяются друг с другом особыми F-пилями (F-фимбриями), по каналам которых фрагменты ДНК и переносятся. Конъюгацию можно разбить на следующие этапы: 1) раскручивание F-плазмиды, 2) проникновение одной из цепей F-плазмиды в клетку-реципиента через F-пилю, 3) синтез комплементарной цепи на матрице одноцепочечной ДНК (происходит как в клетке-доноре (F +), так и в клетке-реципиенте (F -)).

Трансформация - однонаправленный перенос фрагментов ДНК от клетки-донора к клетке-реципиенту, не контактирующих друг с другом. При этом клетка-донор или «выделяет» из себя небольшой фрагмент ДНК, или ДНК попадает в окружающую среду после гибели этой клетки. В любом случае ДНК активно поглощается клеткой-реципиентом и встраивается в собственную «хромосому».

Трансдукция - перенос фрагмента ДНК от клетки-донора к клетке-реципиенту с помощью бактериофагов.

Вирусы

Вирусы состоят из нуклеиновой кислоты (ДНК или РНК) и белков, образующих оболочку вокруг этой нуклеиновой кислоты, т.е. представляют собой нуклеопротеидный комплекс. В состав некоторых вирусов входят липиды и углеводы. Вирусы содержат всегда один тип нуклеиновой кислоты - либо ДНК, либо РНК. Причем каждая из нуклеиновых кислот может быть как одноцепочечной, так и двухцепочечной, как линейной, так и кольцевой.

Размеры вирусов - 10–300 нм. Форма вирусов: шаровидная, палочковидная, нитевидная, цилиндрическая и др.

Капсид - оболочка вируса, образована белковыми субъединицами, уложенными определенным образом. Капсид защищает нуклеиновую кислоту вируса от различных воздействий, обеспечивает осаждение вируса на поверхности клетки-хозяина. Суперкапсид характерен для сложноорганизованных вирусов (ВИЧ, вирусы гриппа, герпеса). Возникает во время выхода вируса из клетки-хозяина и представляет собой модифицированный участок ядерной или наружной цитоплазматической мембраны клетки-хозяина.

Если вирус находится внутри клетки-хозяина, то он существует в форме нуклеиновой кислоты. Если вирус находится вне клетки-хозяина, то он представляет собой нуклеопротеидный комплекс, и эта свободная форма существования называется вирионом . Вирусы обладают высокой специфичностью, т.е. они могут использовать для своей жизнедеятельности строго определенный круг хозяев.

Структура бактерий хорошо изучена с помощью электронной микроскопии целых клеток и их ультратонких срезов. Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембра­ны, цитоплазмы с включениями и ядра, называ­емого нуклеоидом. Имеются дополнительные струк­туры: капсула, микрокапсула, слизь, жгутики, пили (рис.1); некоторые бактерии в неблагоприятных условиях способны образовывать споры.

Клеточная стенка - прочная, упругая структура, придающая бактерии определенную форму и вместе с подлежащей цитоплаз­матической мембраной «сдерживающая» высокое осмотическое давление в бактериальной клетке. Она участвует в процессе де­ления клетки и транспорте метаболитов. Наиболее толстая клеточ­ная стенка у грамположительных бактерий (рис.1). Так, если толщина клеточной стенки грамотрицательных бактерий около 15-20 нм, то у грамположительных она может достигать 50 нм и более. В клеточной стенке грамположительных бактерий содер­жится небольшое количество полисахаридов, липидов, белков.

Основным компонентом клеточной стенки этих бак­терий является многослойный пептидогликан (муреин, мукопептид), составляющий 40-90 % массы клеточной стенки.

Волютин Мезосома Нуклеоид

Рис. 1. Строение бактериальной клетки.

С пептидогликаном клеточной стенки грамположительных бак­терий ковалентно связаны тейхоевые кислоты (от греч. teichos - стенка), молекулы которых представляют собой цепи из 8-50 остатков глицерола и рибитола, соединенных фосфатными мостиками. Форму и прочность бактериям придает жесткая волокнистая структура многослойного с поперечными пептидными сшивками пептидогликана. Пептидогликан представлен па­раллельно расположенными молекулами гликана, состоящего из повторяющихся остатков N -ацетилглюкозамина и N -ацетилмурамовой кислоты, соединенных гликозидной связью типа Р (1 -> 4).

Лизоцим, являясь ацетилмурамидазой, разрывает эти связи. Гликановые молекулы связаны поперечной пептидной связью. Отсюда и название этого полимера - пептидогли­кан. Основу пептидной связи пептидогликана грамотрицатель­ных бактерий составляют тетрапептиды, состоящие из чере­дующихся L- и Д -аминокислот.

У E. coli пептидные цепи соединены друг с другом через D- аланин одной цепи и мезодиаминопимелиновую кислоту дру­гой.

Состав и строение пептидной части пептидогликана у грам­отрицательных бактерий стабильны в отличие от пептидогли­кана грамположительных бактерий, аминокислоты которого могут отличаться по составу и последовательности. Тетрапептиды здесь соединены друг с другом полипептидными цепоч­ками из 5 остатков глицина. У грамположительных бактерий вместо мезодиаминопимелиновой кислоты часто содержится лизин. Фосфолипид

Рис. 2. Строение поверхностных структур грамположительных (грам+) и грамотрицательных (грам") бактерий.

Элементы гликана (ацетилглюкозамин и ацетилмурамовая кис­лота) и аминокислоты тетрапептида (мезодиаминопимелиновая и Л-глутаминовая кислоты, Д-аланин) являются отличительной особенностью бактерий, поскольку они и Д-изомеры амино­кислот отсутствуют у животных и человека.

Способность грамположительных бактерий при окраске по Граму удерживать генциановый фиоле­товый в комплексе с йодом (сине-фиолетовая окраска бактерий) связана со свойством многослой­ного пептидогликана взаимодействовать с красите­лем. Кроме этого, последующая обработка мазка бактерий спиртом вызывает суживание пор в пептидогликане и тем самым задержку красителя в клеточной стенке. Грамотрицательные бактерии после воздействия спиртом утрачивают краситель, обес­цвечиваются и при обработке фуксином окраши­ваются в красный цвет. Это обусловлено меньшим количеством пептидогликана (5-10 % массы кле­точной стенки).

В состав клеточной стенки грамотрицательных бактерий входит наружная мембрана, связанная посредством липопротеина с подлежащим слоем пептидогликана (рис.2). Наружная мем­брана представляет собой волнообразную трехслойную структу­ру, сходную с внутренней мембраной, которую называют ци-топлазматической. Основным компонентом этих мембран служит бимолекулярный (двойной) слой липидов.

Наружная мембрана является асимметричной моза­ичной структурой, представленной липополисахаридами, фосфолипидами и белками . С ее внешней сто­роны расположен липополисахарид (ЛПС), состоя­щий из трех компонентов: липида А, стержневой части, или ядра (лат. core - ядро), и 0-специфической цепи полисахарида, образованной повторяющимися олигосахаридными последовательностями.

Липополисахарид «заякорен» в наружной мембране липидом А, обусловливающим токсичность ЛПС, отождествляемому поэто­му с эндотоксином . Разрушение бактерий антибиотиками при­водит к освобождению большого количества эндотоксина,чтоможет привести к эндотоксическому шоку больного.

От липида А отходит ядро, или стержневая часть ЛПС. Наи­более постоянной частью ядра ЛПС является кетодезоксиоктоновая кислота (3-деокси-г)-манно-2-октулосоновая кислота). 0 -специфическая цепь, отходящая от стержневой части молекулы ЛПС, обусловливает серогруппу, серовар (разновидность бакте­рий, выявляемая с помощью иммунной сыворотки) определен­ного штамма бактерий. Таким образом, с понятием ЛПС - связаны представления об 0-антигене, покоторому можно диф­ференцировать бактерии. Генетические изменения могут приве­сти к изменениям в биосинтезе компонентовЛПС бактерий и к появлению в результате этого L -форм.

Белки матрикса наружной мембраны пронизывают ее таким образом, что молекулы белка, называемые поринами, окаймля­ют гидрофильные поры, через которые проходят вода и мелкие молекулы с относительной массой до 700. Между наружной и цитоплазматической мембранами находится периплазматическое пространство, или периплазма, содержащая ферменты. При на­рушении синтеза клеточной стенки бактерий под влиянием лизоцима, пенициллина, защитных факторов организма и дру­гих соединений образуются клетки с измененной (часто шаро­видной) формой: протопласты - бактерии, полностью лишен­ные клеточной стенки; сферопласты - бактерии с частично со­хранившейся клеточной стенкой. После удаления ингибитора кле­точной стенки такие измененные бактерии могут реверсировать, т.е. приобретать полноценную клеточную стенку и восстанавли­вать исходную форму.

Бактерии сферо- или протопластного типа, утратившие спо­собность к синтезу пептидогликана под влиянием антибиотиков или других факторов и способные размножаться, называются L-формами (от названия института им. Листера). L -формы могут возникать и в результате мутаций. Они представляют собой ос­мотически чувствительные, шаровидные, колбовидные клетки различной величины, в том числе и проходящие через бакте­риальные фильтры. Некоторые L -формы (нестабильные) при удалении фактора, приведшего к изменениям бактерий, могут реверсировать, «возвращаясь» в исходную бактериальную клет­ку. L -формы могут образовывать многие возбудители инфекци­онных болезней.

Цитоплазматическая мембрана при электронной микроско­пии ультратонких срезов представляет собой трехслойную мем­брану, окружающую наружную часть цитоплазмы бактерий. По структуре она похожа на плазмалемму клеток животных и состоит из двойного слоя липидов, главным образом фосфолипидов с внедренными поверхностными, а также интегральными белка­ми, как бы пронизывающими насквозь структуру мембраны. Некоторые из них являются пермеазами, участвующими в транс­порте веществ. Цитоплазматическая мембрана является динами­ческой структурой с подвижными компонентами, поэтому ее представляют как мобильную текучую структуру. Она участвует в регуляции осмотического давления, транспорте веществ и энергетическом метаболизме клетки (за счет ферментов цепи переноса электронов, аденозинтрифосфатазы и др.). При избы­точном росте (по сравнению с ростом клеточной стенки) Ци­топлазматическая мембрана образует инвагинаты - впячивания в виде сложно закрученных мембранных структур, называемые мезосомами. Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами. Роль мезосом и внутрицитоплазматических мембран до конца не выяснена. Предпо­лагают даже, что они являются артефактом, возникающим после приготовления (фиксации) препарата для электронной микро­скопии. Тем не менее считают, что производные цитоплазмати­ческой мембраны участвуют в делении клетки, обеспечивая энергией синтез клеточной стенки, принимают участие в сек­реции веществ, спорообразовании, т.е. в процессах с высокой затратой энергии.

Цитоплазма занимает основной объем бактериальной клетки и состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул - рибосом, ответ­ственных за синтез (трансляцию) белков. Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, 3 отличие от 80^-рибосом, характерных для эукариотических клеток. Поэтому некоторые антибиотики, связываясь с рибосо-мами бактерий, подавляют синтез бактериального белка, не влияя на синтез белка эукариотических клеток. Рибосомы бактерий могут диссоциировать на две субъединицы - 50S и 30S . В ци­топлазме имеются различные включения в виде гранул глико­гена, полисахаридов, поли-р-масляной кислоты и полифосфа­тов (волютин). Они накапливаются при избытке питательных веществ в окружающей среде и выполняют роль запасных ве­ществ для питания и энергетических потребностей. Волютин обладает сродством к основным красителям, обладает метахро-мазией и легко выявляется с помощью специальных методов окраски. Характерное расположение зерен волютина выявляется у дифтерийной палочки в виде интенсивно прокрашивающихся полюсов клетки.

Нуклеоид - эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитчатой ДНК, замкну­той в кольцо и плотно уложенной наподобие клубка. В отличие от эукариот ядро бактерий не имеет ядерной оболочки, ядрыш­ка и основных белков (гистонов). Обычно в бактериальной клетке содержится одна хромосома, представленная замкнутой в кольцо молекулой ДНК. При нарушении деления в ней может находить­ся 4 и более хромосом. Нуклеоид выявляется в световом микро­скопе после окраски специфическими для ДНК методами: по Фельгену или по Романовскому-Гимзе. На электронограммах ультратонких срезов бактерий нуклеоид имеет вид светлых зон с фибриллярными, нитевидными структурами ДНК, связанной определенными участками с цитоплазматической мембраной или мезосомой, участвующими в репликации хромосомы.

Кроме нуклеоида, представленного одной хромосомой, в бак­териальной клетке имеются внехромосомные факторы наслед­ственности - плазмиды , представляющие собой ковалентно замкнутые кольца ДНК.

Капсула - слизистая структура толщиной более 0,2 мкм, проч­но связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпечатках из патологического материала. В чистых культурах бак­терий капсула образуется реже. Она выявляется при специаль­ных методах окраски по Бурри-Гинсу, создающих негативное контрастирование веществ капсулы.

Обычно капсула состоит из полисахаридов (экзополисахаридов), иногда из полипептидов, например у сибиреязвенной бациллы. Капсула гидрофильна, она препятствует фагоцитозу бактерий.

Многие бактерии образуют микрокапсулу - слизистое образова­ние толщиной менее 0,2 мкм, выявляемое лишь при электрон­ной микроскопии. От капсулы следует отличать слизь - мукоидные экзополисахариды, не имеющие четких внешних границ. Мукоидные экзополисахариды характерны для мукоидных штам­мов синегнойной палочки, часто встречающихся в мокроте больных с кистозным фиброзом. Бактериальные экзополисаха­риды участвуют в адгезии (прилипании к субстратам), их еще называют гликокаликсом. Кроме синтеза экзополисахаридов бак­териями, существует и другой механизм их образования: путем действия внеклеточных ферментов бактерий на дисахариды. В результате этого образуются декстраны и леваны. Капсула и слизь предохраняют бактерии от повреждений, высыхания, так как, являясь гидрофильными, хорошо связывают воду, препятству­ют действию защитных факторов макроорганизма и бактерио­фагов.

Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие на­чало от цитоплазматической мембраны, имеют большую длину, чем сама клетка (рис.3). Толщина жгутиков 12-20 нм, длина 3-12 мкм. Число жгутиков у бактерий различных видов варь­ирует от одного (монотрих) у холерного вибриона до десятка и сотен жгутиков, отходящих по периметру бактерии (пери-трих) у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки. Жгутики прикреплены к цитоплазматической мембране и клеточной стенке специальными дисками. Жгутики состоят из белка - флагеллина (от naT.flagellum - жгутик), обладающего антигенной специфичностью. Субъединицы флагеллина закруче ны в виде спирали. Жгутики выявляют с помощью электронной микроскопии препаратов, напыленных тяжелыми металлами, или в световом микроскопе после обработки специальными метода­ми, основанными на протравливании и адсорбции различных веществ, приводящих к увеличению толщины жгутиков (напри­мер, после серебрения).

Рис. 3. Кишечная палочка. Электронограмма (препарат В.С.Тюрина). 1 - жгутики, 2 - ворсинки, 3 - F-пили.

Ворсинки, или пили (фимбрии), - нитевидные образования (рис.3), более тонкие и короткие (3-10 нм х 0,3-10 мкм), чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина. Они обладают антигенной активностью. Сре­ди пилей выделяются: пили, ответственные за адгезию, т.е. за прикрепление бактерий к поражаемой клетке (пили 1-го типа, или общего типа - common pili), пили, ответственные за пи­тание, водно-солевой обмен; половые (F-пили), или конъюга-ционные пили (пили 2-го типа). Пили общего типа многочис­ленны - несколько сотен на клетку. Половые пили образуются так называемыми «мужскими» клетками-донорами, содержа­щими трансмиссивные плазмиды (F, R, Col). Их обычно бывает 1-3 на клетку. Отличительной особенностью половых пилей является взаимодействие с особыми «мужскими» сферически ми бактериофагами, которые интенсивно адсорбируются на по­ловых пилях.

Споры - своеобразная форма покоящихся фирмикутных бак­терий, т.е. бактерий с грамположительным типом строения кле­точной стенки.

Споры образуются при неблагоприятных условиях су­ществования бактерий (высушивание, дефицит пита­тельных веществ и др.). При этом внутри одной бак­терии образуется одна спора. Образование спор способствует сохранению вида и не является спосо­бом размножения, как у грибов.

Спорообразующие аэробные бактерии, у которых размер споры не превышает диаметр клетки, иногда называются бациллами. Спорообразующие анаэробные бактерии, у которых размер спо­ры превышает диаметр клетки, и поэтому они принимают фор­му веретена, называются клостридиями (лат. clostridium - вере­тено).

Процесс спорообразования (споруляция) проходит ряд ста­дий, в течение которых часть цитоплазмы и хромосома отде­ляются, окружаясь цито плазматической мембраной; образуется проспора, затем формируется многослойная плохо проницаемая оболочка. Спорообразование сопровождается интенсивным потреб­лением проспорой, а затем формирующейся оболочкой споры дипиколиновой кислоты и ионов кальция. После формирования всех структур спора приобретает термоустойчивость, которую свя­зывают с наличием дипиколината кальция. Спорообразование, форма и расположение спор в клетке (вегетативной) являются видовым свойством бактерий, что позволяет отличать их друг от друга. Форма спор может быть овальной, шаровидной, рас­положение в клетке - терминальное, т.е. на конце палочки (возбудитель столбняка), субтерминальное - ближе к концу палочки (возбудители ботулизма, газовой гангрены) и цент­ральное (сибиреязвенная бацилла).

Мы даже не можем представить себе, сколько микроорганизмов постоянно окружают нас. Взявшись за поручень в автобусе, вы уже посадили себе на руку порядка ста тысяч бактерий, зайдя в общественный туалет, вы, опять-таки, наградили себя этими микроорганизмами. Бактерии всегда и везде сопровождают человека. Но не нужно на это слово реагировать негативно, ведь бактерии бывают не только патогенными, но также полезными для организма.

Ученые были очень удивлены, когда поняли, что некоторые бактерии сохранили свой внешний вид в течение приблизительно миллиарда лет. Такие микроорганизмы даже сравнивали с автомобилем марки "Фольксваген" - внешний вид одной их модели не менялся 40 лет, имея идеальную форму.

Бактерии появились на Земле одними из первых, поэтому их заслуженно можно назвать долгожителями. Интересным является тот факт, что эти клетки не имеют сформированного ядра, поэтому и по сей день привлекают много внимания к своему строению.

Что такое бактерии?

Бактерии - это микроскопические организмы растительного происхождения. Строение бактериальной клетки (таблица, схемы существуют для ясности понимания видов этих клеток) зависит от ее предназначения.

Эти клетки распространены везде, так как способны быстро размножаться. Существуют научные доказательства того, что буквально за шесть часов одна клетка может дать потомство в 250 тысяч бактерий. Эти одноклеточные организмы имеют множество разновидностей, которые различаются по форме.

Бактерии - очень живучие организмы, их споры могут сохранять способность к жизни на протяжении 30-40 лет. Переносятся эти споры с дуновением ветра, током воды и другими способами. Жизнеспособность сохраняется до температуры 100 градусов и при небольшом морозе. И все-таки, какое строение имеет бактериальная клетка? В таблице описаны основные составляющие бактерии, функции других органелл изложены ниже.

Шаровидные (кокки) бактерии

По своей природе они патогенные. Кокки делят на группы в зависимости от их расположения друг к другу:

  • Микрококки (маленькие). Деление происходит в одной плоскости. Расположение в хаотичном одиночном порядке. Питаются готовыми органическими соединениями, но при этом не зависят от других организмов (сапрофиты).
  • Диплококки (двойные). Делятся в такой же плоскости, что и микрококки, но образуют парные клетки. Внешне напоминают бобы или ланцетник.
  • Стрептококки (в виде цепочки). Деление такое же, но клетки соединены между собой и выглядят, как бусы.
  • Стафилококки (виноградная гроздь). Этот вид делится в нескольких плоскостях, при этом образуется скопление клеток, похожих на виноград.
  • Тетракокки (четверка). Клетки делятся в двух перпендикулярных плоскостях, образуя тетрады.
  • Сарцины (связка). Такие клетки делятся в трех плоскостях, которые взаимно перпендикулярны между собой. При этом внешне они похожи на пакеты или тюки, состоящие из множества особей четного количества.

Цилиндрические (палочки) бактерии

Палочки, которые образуют споры, подразделяют на клостридии и бациллы. По своим размерам эти бактерии бывают короткими и очень короткими. Конечные отделы палочек бывают закруглены, утолщены или обрезаны. В зависимости от расположения бактерий выделяют несколько групп: моно-, дипло- и стрептобактерии.

Спиралевидные (извитые) бактерии

Эти микроскопические клетки бывают двух видов:

  • Вибрионы (с одиночным изгибом или вообще прямые).
  • Спириллы (большие по размеру, но завитков мало).

Нитевидные бактерии. Существует две группы таких форм:

  • Временные нити.
  • Постоянные нити.

Особенности строения бактериальной клетки заключаются в том, что в процессе своего существования она способна изменять формы, но при этом полиморфизм не передается по наследству. Разные факторы действуют на клетку в процессе метаболизма в организме, вследствие этого наблюдаются количественные изменения в ее внешнем виде. Но как только действие извне прекратится, клетка примет прежний образ. Каковы особенности строения бактериальной клетки, можно выявить при ее рассмотрении с помощью микроскопа.

Строение бактериальной клетки, оболочка

Оболочка придает и поддерживает форму клетки, защищает внутренние составляющие от повреждений. Благодаря неполной проницаемости не все вещества могут попасть в клетку, что способствует обмену низко- и высокомолекулярных структур между внешней средой и самой клеткой. Также в стенке происходят различные химические реакции. С помощью электронного микроскопа нетрудно изучить, какое детализированное строение имеет бактериальная клетка.

Основа оболочки содержит полимер муреин. Грамположительные бактерии имеют однослойный скелет, состоящий из муреина. Здесь находятся полисахаридные и липопротеидные комплексы, фосфаты. У грамотрицатель-ных клеток муреиновый скелет имеет множество слоев. Наружный слой, прилегающий к клеточной стенке, является цитоплазматической мембра-ной. Она также имеет определенные слои, содержащие белки с липидами. Главная функция цитоплазматической мембраны - это контроль проникновения веществ внутрь клетки и выведения их (осмотический барьер). Это очень важная функция для клеток, так как с ее помощью происходит защита клеток.

Состав цитоплазмы

Живое полужидкое вещество, заполняющее клеточную полость, называется цитоплазмой. Большое количество белка, запас питательных веществ (жиры и жироподобные вещества) содержит в себе бактериальная клетка. Фото, сделанное во время исследования под микроскопом, хорошо показывает состав-ляющие части внутри цитоплазмы. В основной состав входят рибосомы, располагающиеся в хаотичном порядке и большом количестве. Также в составе имеются мезосомы, содержащие ферменты окислительно-вос-становительного характера. За счет них клетка черпает энергию. Ядро представлено в виде ядерного вещества, находящегося в тельцах хроматина.

Функции рибосом в клетках

Рибосомы состоят из субъединиц (2) и являются нуклеопротеидами. Соединяясь между собой, эти составляющие элементы образуют полисомы или полирибосомы. Главной задачей этих включений является белковый синтез, происходящий на основе генетической информации. Скорость седимента-ции 70S.

Особенности ядра бактерий

Генетический материал (ДНК) находится в неоформленном ядре (нуклеоид). Это ядро расположено в нескольких местах цитоплазмы, являясь неплотной оболочкой. Бактерии, име-ющие такое ядро, называются прокариотами. Аппарат ядра лишен мембраны, ядрышка и набора хромосом. А дезоксирибонуклеиновая кислота располагается в нем фибрильными пучками. Схема строения бактериальной клетки детально демонстрирует структуру ядерного аппарата.

При некоторых условиях у бактерий может возникнуть ослизнение оболочек. Вследствие этого проис-ходит образование капсулы. Если ослизнение очень сильное, то бактерии превращаются в зооглею (общая слизистая масса).

Капсула бактериальной клетки

Строение бактериальной клетки имеет особенность - это наличие защитной капсулы, состоящей из полисахаридов или гликопротеидов. Иногда эти капсулы состоят из полипептидов или клетчатки. Она располагается поверх клеточной оболочки. По толщине капсула может быть как толстой, так и тонкой. Ее образование происходит за счет условий, в которые попадает клетка. Основное свойство капсулы - это защита бактерии от высыхания.

Кроме защитной капсулы строение бактериальной клетки предусматривает ее двигательную ее способность.

Жгутики на бактериальных клетках

Жгутики являются дополнительными элементами, которые осуществляют движение клетки. Они представлены в виде нитей разной длины, которые состоят из флагеллина. Это белок, который обладает способностью сокращаться.

Состав жгутика трехкомпонентный (нить, крю-чок, базальное тельце). В зависимости от прикрепления и расположения выделили не-сколько групп подвижных бактерий:

  • Монотрихи (эти клетки имеют 1 жгутик, расположенный полярно).
  • Лофотрихи (жгутики в виде пучка на одном из концов клетки).
  • Амфитрихи (пучки с обоих концов).

Существует много интересных фактов о бактериях. Так, уже давно доказано, что на мобильном телефоне содержится огромное количество этих клеток, даже на сидении унитаза их меньше. Другие бактерии позволяют нам качественно жить - питаться, выполнять определенную деятельность, без проблем освобождать свой организм от продуктов распада питательных веществ. Бактерии поистине разнообразны, их функции многогранны, но не следует забывать об их патологическом влиянии на организм, поэтому важно следить за собственной гигиеной и чистотой вокруг нас.

Бактерии - одни из самых древних организмов на Земле. Несмотря на простоту своего строения, они живут во всех возможных средах обитания. Больше всего их насчитывается в почве (до нескольких миллиардов бактериальных клеток на 1 грамм почвы). Много бактерий в воздухе, воде, пищевых продуктах, внутри тел и на телах живых организмов. Бактерии были обнаружены в тех местах, где другие организмы жить не могут (на ледниках, в вулканах).

Обычно бактерия - это одна клетка (хотя бывают колониальные формы). Причем эта клетка очень мелкая (от долей мкм до нескольких десятков мкм). Но главной особенностью бактериальной клетки является отсутствие клеточного ядра. Другими словами, бактерии принадлежат прокариотам .

Бактерии бывают подвижными и неподвижными. В случае неподвижных форм передвижение осуществляется с помощью жгутиков. Их может быть несколько, а может быть только один.

Клетки разных видов бактерий могут сильно отличаться между собой по форме. Бывают шаровидные бактерии (кокки ), палочковидные (бациллы ), похожие на запятую (вибрионы ), извитые (спирохеты, спириллы ) и др.

Строение бактериальной клетки

У клеток многих бактерий имеется слизистая капсула . Она выполняет защитную функцию. В частности, защищает клетку от высыхания.

Как и у клеток растений, у бактериальных клеток есть клеточная стенка . Однако, в отличие от растений, ее строение и химический состав несколько иной. Клеточная стенка состоит из слоев сложного углевода. Ее строение таково, что позволяет проникать различным веществам внутрь клетки.

Под клеточной стенкой находится цитоплазматическая мембра н а .

Бактерии относятся к прокариотам, так как в их клетках нет оформленного ядра. Они не имеют и хромосом, характерных для клеток эукариот. В состав хромосомы входит не только ДНК, но и белок. У бактерий же их хромосома состоит только из ДНК и представляет собой кольцевую молекулу. Такой генетический аппарат бактерий называется нуклеоид . Нуклеоид находится прямо в цитоплазме, обычно в центре клетки.

У бактерий нет настоящих митохондрий и ряда других клеточных органелл (комплекса Гольджи, эндоплазматической сети). Их функции выполняют впячивания клеточной цитоплазматической мембраны. Такие впячивания называются мезосомами .

В цитоплазме есть рибосомы , а также различные органические включения : белки, углеводы (гликоген), жиры. Также клетки бактерий могут содержать различные пигменты . В зависимости от наличия тех или иных пигментов или их отсутствия, бактерии могут быть бесцветными, зелеными, пурпурными.

Питание бактерий

Бактерии возникли на заре формирования жизни на Земле. Именно они «открыли» различные способы питания. Лишь потом, с усложнением организмов, четко выделились два крупных царства: Растения и Животные. Они отличаются между собой в первую очередь по способу питания. Растения являются автотрофами, а животные - гетеротрофами. У бактерий же встречаются оба типа питания.

Питание - это способ получения клеткой или организмом необходимых органических веществ. Их можно получить из вне или синтезировать самостоятельно из неорганических веществ.

Автотрофные бактерии

Автотрофные бактерии синтезируют органические вещества из неорганических. Процесс синтеза требует энергии. В зависимости от того, откуда автотрофные бактерии получают эту энергию их делят на фотосинтезирующие и хемосинтезирующие.

Фотосинтезирующие бактерии используют энергию Солнца, улавливая его излучение. В этом они сходны с растениями. Однако, если у растений в процессе фотосинтеза выделяется кислород, то у большинства фотосинтезирующих бактерий он не выделяется. То есть бактериальный фотосинтез анаэробен. Также зеленый пигмент бактерий отличается от аналогичного пигмента растений и называется бактериохлорофиллом . У бактерий нет хлоропластов. В основном фотосинтезирующие бактерии обитают в водоемах (пресных и соленых).

Хемосинтезирующие бактерии для синтеза органических веществ из неорганических используют энергию различных химических реакций. Энергия выделяется не во всех реакциях, а только в экзотермических. Некоторые такие реакции протекают в бактериальных клетках. Так в нитрифицирующих бактериях протекает реакция окисления аммиака в нитриты и нитраты. Железобактерии окисляют закисное железо в окисное. Водородные бактерии окисляют молекулы водорода.

Гетеротрофные бактерии

Гетеротрофные бактерии не способны синтезировать органические вещества из неорганических. Поэтому вынуждены получать их из окружающей среды.

Бактерии, питающиеся органическими остатками других организмов (в том числе мертвыми телами), называются бактериями-сапрофитами . По-другому их называют бактериями гниения. Таких бактерий много в почве, где они разлагают перегной до неорганических веществ, которые впоследствии используются растениями. Молочнокислые бактерии питаются сахарами, превращая их в молочную кислоту. Маслянокислые бактерии разлагают органические кислоты, углеводы, спирты до масляной кислоты.

Клубеньковые бактерии живут в корнях растений и питаются за счет органических веществ живого растения. Однако они связывают азот из воздуха и обеспечивают им растение. То есть в данном случае имеет место симбиоз. Другие гетеротрофные бактерии-симбионты обитают в пищеварительном аппарате животных, помогая переваривать пищу.

В процессе дыхания происходит разрушение органических веществ с высвобождением энергии. Эта энергия в последствии тратится на различные процессы жизнедеятельности (например, на движение).

Эффективным способом получения энергии является кислородное дыхание. Однако некоторые бактерии могут получать энергию без кислорода. Таким образом, существуют аэробные и анаэробные бактерии.

Аэробным бактериям необходим кислород, поэтому они обитают в местах, где он есть. Кислород участвует в реакции окисления органических веществ до углекислого газа и воды. В процессе такого дыхания бактерии получают относительно большое количество энергии. Такой способ дыхания характерен для подавляющего числа организмов.

Анаэробные бактерии не нуждаются в кислороде для дыхания, поэтому могут обитать в бескислородной среде. Энергию они получают за счет реакции брожения . Данный способ окисления малоэффективен.

Размножение бактерий

В большинстве случаев для бактерий характерно размножение путем деления их клетки надвое. Перед этим происходит удвоение кольцевой молекулы ДНК. Каждая дочерняя клетка получает одну из этих молекул и, следовательно, является генетической копией материнской клетки (клоном). Таким образом, для бактерий характерно бесполое размножение .

В благоприятных условиях (при достаточном количестве питательных веществ и благоприятных условиях окружающей среды) бактериальные клетки делятся очень быстро. Так от одной бактерии за сутки могут образоваться сотни миллионов клеток.

Хотя бактерии размножаются бесполым путем, в ряде случаев у них наблюдается так называемый половой процесс , который протекает в форме конъюгации . При конъюгации две разные бактериальные клетки сближаются, между их цитоплазмами устанавливается связь. Части ДНК одной клетки переходят во вторую, а части ДНК второй клетки - в первую. Таким образом, при половом процессе у бактерий происходит обмен генетической информации. Иногда при этом бактерии обмениваются не участками ДНК, а целыми молекулами ДНК.

Споры бактерий

Подавляющее большинство бактерий в неблагоприятных условиях образуют споры. Споры бактерий - это в основном способ переживания неблагоприятных условий и способ расселения, а не способ размножения.

При образовании споры цитоплазма бактериальной клетки сжимается, а сама клетка покрывается плотной толстой защитной оболочкой.

Споры бактерий сохраняют жизнеспособность в течении длительного времени и способны переживать очень неблагоприятные условия (крайне высокие и низкие температуры, высыхание).

Когда спора попадает в благоприятные условия, то происходит ее набухание. После этого защитная оболочка сбрасывается, и появляется обычная бактериальная клетка. Бывает, что при этом происходит деление клетки, и образуется несколько бактерий. То есть спорообразование сочетается с размножением.

Значение бактерий

Огромна роль бактерий в круговороте веществ в природе. В первую очередь это относится к бактериям гниения (сапрофитам). Их называют санитарами природы . Разлагая остатки растений и животных, бактерии превращают сложные органические вещества в простые неорганические (углекислый газ, воду, аммиак, сероводород).

Бактерии повышают плодородие почвы, обогащая ее азотом. В нитрифицирующих бактериях протекают реакции, в процессе которых из аммиака образуются нитриты, а из нитритов - нитраты. Клубеньковые бактерии способны усваивать атмосферный азот, синтезируя азотистые соединения. Они живут в корнях растений, образуя клубеньки. Благодаря этим бактериям, растения получают необходимые им азотистые соединения. В основном в симбиоз с клубеньковыми бактериями вступают бобовые растения. После их отмирания почва обогащается азотом. Это нередко используется в сельском хозяйстве.

В желудке жвачных животных бактерии разлагают целлюлозу, что способствует более эффективному пищеварению.

Велика положительная роль бактерий в пищевой промышленности. Многие виды бактерий используются для получения молочнокислых продуктов, сливочного масла и сыра, квашения овощей, а также в виноделии.

В химической промышленности бактерии используются при получении спиртов, ацетона, уксусной кислоты.

В медицине с помощью бактерий получают ряд антибиотиков, ферментов, гормонов и витаминов.

Однако бактерии могут приносить и вред. Они не просто портят продукты питания, но своими выделениями делают их ядовитыми.

Для изучения строения бактериальной клетки наряду со световым микроскопом применяют электронно-микроскопические и микрохимические исследования, позволяющие определить ультраструктуру бактериальной клетки.

Бактериальная клетка (рис. 5) состоит из следующих частей: трехслойной оболочки, цитоплазмы с различными включениями и ядерного вещества (нуклеоида). Дополнительными структурными образованиями являются капсулы, споры, жгутики, пили.


Рис. 5. Схематическое изображение строения бактериальной клетки. 1 - оболочка; 2 - слизистый слой; 3 - клеточная стенка; 4 - цитоплазматическая мембрана; 5 - цитоплазма; 6 - рибосома; 7 - полисома; 8 - включения; 9 - нуклеоид; 10 - жгутик; 11 - пили

Оболочка клетки состоит из наружного слизистого слоя, клеточной стенки и цитоплазматической мембраны.

Слизистый капсульный слой находится снаружи клетки и выполняет защитную функцию.

Клеточная стенка - один из основных структурных элементов клетки, сохраняющий ее форму и отделяющий клетку от окружающей среды. Важным свойством клеточной стенки является избирательная проницаемость, которая обеспечивает проникновение в клетку необходимых питательных веществ (аминокислот, углеводов и др.) и выведение из клетки продуктов обмена. Клеточная стенка сохраняет внутри клетки постоянное осмотическое давление. Прочность стенки обеспечивает муреин, вещество полисахаридной природы. Некоторые вещества разрушают клеточную стенку, например лизоцим.

Бактерии, полностью лишенные клеточной стенки, называются протопластами. Они сохраняют способность к дыханию, делению, синтезу ферментов; к воздействию внешних факторов: механическому повреждению, осмотическому давлению, аэрации и др. Сохранить протопласты можно только в гипертонических растворах.

Бактерии с частично разрушенной клеточной стенкой называются сферопластами. Если подавить процесс синтеза клеточной стенки с помощью пенициллина, то образуются L-формы, которые у всех видов бактерий представляют шаровидные крупные и мелкие клетки с вакуолями.

Цитоплазматическая мембрана плотно прилегает к клеточной стенке с внутренней стороны. Она очень тонкая (8-10 нм) и состоит из белков и фосфолипидов. Это пограничный полупроницаемый слой, через который осуществляется питание клетки. В мембране находятся ферменты пермеазы, осуществляющие активный перенос веществ, и ферменты дыхания. Цитоплазматическая мембрана образует мезосомы, принимающие участие в делении клетки. При помещении клетки в гипертонический раствор мембрана может отделиться от клеточной стенки.

Цитоплазма - внутреннее содержимое бактериальной клетки. Она представляет собой коллоидную систему, состоящую из воды, белков, углеводов, липидов, различных минеральных солей. Химический состав и консистенция цитоплазмы изменяются в зависимости от возраста клетки и условий окружающей среды. В цитоплазме находятся ядерное вещество, рибосомы и различные включения.

Нуклеоид, ядерное вещество клетки, ее наследственный аппарат. Ядерное вещество прокариотов в отличие от эукариотов не имеет собственной мембраны. Нуклеоид зрелой клетки представляет собой двойную нить ДНК, свернутую в кольцо. В молекуле ДНК закодирована генетическая информация клетки. По генетической терминологии ядерное вещество получило название генофор или геном.

Рибосомы находятся в цитоплазме клетки и выполняют функцию синтеза белка. В состав рибосомы входит 60% РНК и 40% белка. Количество рибосом в клетке достигает 10000. Соединяясь вместе, рибосомы образуют полисомы.

Включения - гранулы, содержащие различные запасные питательные вещества: крахмал, гликоген, жир, волютин. Они расположены в цитоплазме.

Клетки бактерий в процессе жизнедеятельности образуют защитные органеллы - капсулы и споры.

Капсула - внешний уплотненный слизистый слой, примыкающий к клеточной стенке. Это защитный орган, который появляется у некоторых бактерий при попадании их в организм человека и животных. Капсула предохраняет микроорганизм от защитных факторов организма (возбудители пневмонии и сибирской язвы). Некоторые микроорганизмы имеют постоянную капсулу (клебсиеллы).

Споры встречаются только у палочковидных бактерий. Они образуются при попадании микроорганизма в неблагоприятные условия внешней среды (действие высоких температур, высыхание, изменение рН, уменьшение количества питательных веществ в среде и т. д.). Споры находятся внутри бактериальной клетки и представляют уплотненный участок цитоплазмы с нуклеоидом, одетый собственной плотной оболочкой. По химическому составу они отличаются от вегетативных клеток малым количеством воды, увеличенным содержанием липидов и солей кальция, что способствует высокой устойчивости спор. Спорообразование происходит в течение 18-20 ч; при попадании микроорганизма в благоприятные условия спора в течение 4-5 ч прорастает в вегетативную форму. В бактериальной клетке образуется только одна спора, следовательно, споры не являются органами размножения, а служат для переживания неблагоприятных условий.

Спорообразующие аэробные бактерии называются бациллами, а анаэробные - клостридиями.

Споры отличаются по форме, размерам и расположению в клетке. Они могут располагаться центрально, субтерминально и терминально (рис. 6). У возбудителя сибирской язвы спора располагается центрально, ее размер не превышает поперечника клетки. Спора возбудителя ботулизма расположена ближе к концу клетки - субтерминально и превышает ширину клетки. У возбудителя столбняка округлая спора располагается на конце клетки - терминально и значительно превышает ширину клетки.

Жгутики - органы движения, характерны для палочковидных бактерий. Это тонкие нитевидные фибриллы, состоящие из белка - флагеллина. Длина их значительно превышает длину бактериальной клетки. Жгутики отходят от базального тельца, расположенного в цитоплазме, и выходят на поверхность клетки. Наличие их можно обнаружить по определению подвижности клеток под микроскопом, в полужидкой питательной среде или при окраске специальными методами. Ультраструктура жгутиков изучена в электронном микроскопе. По расположению жгутиков бактерии делят на группы (см. рис. 6): монотрихи - с одним жгутиком (возбудитель холеры); амфитрихи - с пучками или единичными жгутиками на обоих концах клетки (спириллы); лофотрихи - с пучком жгутиков на одном конце клетки (фекальный щелочеобразователь); перитрихи - жгутики расположены по всей поверхности клетки (кишечные бактерии). Скорость движения бактерий зависит от количества и расположения жгутиков (наиболее активны монотрихи), от возраста бактерий и влияния окружающих факторов.



Рис. 6. Варианты расположения спор и жгутиков у бактерий. I - споры: 1 - центральное; 2 - субтерминальное; 3 - терминальное; II - жгутики: 1 - монотрихи; 2 - амфитрихи; 3 - лофотрихи; 4 - перитрихи

Пили или фимбрии - ворсинки, расположенные на поверхности бактериальных клеток. Они короче и тоньше жгутиков и также имеют спиральную структуру. Состоят пили из белка - пилина. Одни пили (их несколько сотен) служат для прикрепления бактерий к клеткам животных и человека, с другими (единичными) связана передача генетического материала из клетки в клетку.

Микоплазмы

Микоплазмы - клетки, не имеющие клеточной стенки, но окруженные трехслойной липопротеидной цитоплазматической мембраной. Микоплазмы могут быть сферической, овальной формы, в виде нитей и звезд. Микоплазмы по классификации Берги выделены в отдельную группу. В настоящее время этим микроорганизмам уделяется все большее внимание как возбудителям заболеваний воспалительного характера. Размеры их различны: от нескольких микрометров до 125-150 нм. Мелкие микоплазмы проходят через бактериальные фильтры и называются фильтрующимися формами.

Спирохеты

Спирохеты (см. рис. 52) (от лат. speira - изгиб, chaite - волосы) - тонкие, извитые, подвижные одноклеточные организмы, имеющие размеры от 5 до 500 мкм в длину и 0,3-0,75 мкм в ширину. С простейшими их роднит способ движения путем сокращения внутренней осевой нити, состоящей из пучка фибрилл. Характер движения спирохет различен: поступательное, вращательное, сгибательное, волнообразное. В остальном строение клетки типичное для бактерий. Некоторые спирохеты слабо окрашиваются анилиновыми красителями. Спирохеты разделяют на роды по количеству и форме завитков нити и ее окончанию. Кроме сапрофитных форм, распространенных в природе и организме человека, среди спирохет имеются болезнетворные - возбудители сифилиса и других заболеваний.

Риккетсии

Вирусы

Среди вирусов выделяют группу фагов (от лат. phagos - пожирающий), вызывающих лизис (разрушение) клеток микроорганизмов. Сохраняя присущие вирусам свойства и состав, фаги отличаются структурой вириона (см. главу 8). Они не вызывают заболеваний человека и животных.

Контрольные вопросы

1. Расскажите о классификации микроорганизмов.

2. Назовите основные свойства представителей царства прокариотов.

3. Перечислите и охарактеризуйте основные формы бактерий.

4. Назовите основные органеллы клетки и их назначение.

5. Дайте краткую характеристику основных групп бактерий и вирусов.

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...