Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Электролизер промышленный. Электролизные установки

5.13.1. При эксплуатации электролизных установок должны контролироваться: напряжение и ток на электролизерах, давление водорода и кислорода, уровни жидкости в аппаратах, разность давлений между системами водорода и кислорода, температура электролита в циркуляционном контуре и температура газов в установках осушки, влажность водорода после установок осушки, чистота водорода и кислорода в аппаратах и содержание водорода в помещениях установки.

Нормальные и предельные значения контролируемых параметров должны быть установлены на основе инструкции завода-изготовителя и проведенных испытаний и строго соблюдаться при эксплуатации.

5.13.2. Технологические защиты электролизных установок должны действовать на отключение преобразовательных агрегатов (двигателей-генераторов) при следующих отклонениях от установленного режима:

разности давлений в регуляторах давления водорода и кислорода более 200 кгс/м 2 (2 кПа);

давлении в системах выше номинального;

межполюсных коротких замыканиях;

однополюсных коротких замыканиях на землю (для электролизеров с центральным отводом газов);

исчезновении напряжения на преобразовательных агрегатах (двигателях-генераторах) со стороны переменного тока.

При автоматическом отключении электролизной установки, а также повышении температуры электролита в циркуляционном контуре до 70°С, при увеличении содержания водорода в воздухе помещений электролизеров и датчиков газоанализаторов до 1% на щит управления должен подаваться сигнал.

После получения сигнала оперативный персонал должен прибыть на установку не позднее чем через 15 мин.

Повторный пуск установки после отключения ее технологической защитой должен осуществляться оперативным персоналом только после выявления и устранения причины отключения.

5.13.3. Электролизная установка, работающая без постоянного дежурства персонала, должна осматриваться не реже 1 раза в смену. Обнаруженные дефекты и неполадки должны регистрироваться в журнале (картотеке) и устраняться в кратчайшие сроки.

При осмотре установки оперативный персонал должен проверять:

соответствие показаний дифференциального манометра-уровнемера уровням воды в регуляторах давления работающего электролизера;

положение уровней воды в регуляторах давления отключенного электролизера;

открытие клапанов выпуска газов в атмосферу из регуляторов давления отключенного электролизера;

наличие воды в гидрозатворах;

расход газов в датчиках газоанализаторов (по ротаметрам);

нагрузку и напряжение на электролизере;

температуру газов на выходе из электролизера;

давление водорода и кислорода в системе и ресиверах;

давление инертного газа в ресиверах.

5.13.4. Для проверки исправности автоматических газоанализаторов 1 раз в сутки должен проводиться химический анализ содержания кислорода в водороде и водорода в кислороде. При неисправности одного из автоматических газоанализаторов соответствующий химический анализ должен проводиться каждые 2 ч.

5.13.5. На регуляторах давления водорода и кислорода и на ресиверах предохранительные клапаны должны быть отрегулированы на давление, равное 1,15 номинального. Предохранительные клапаны на регуляторах давления должны проверяться не реже 1 раза в 6 мес., а предохранительные клапаны на ресиверах - не реже 1 раза в 2 года. Предохранительные клапаны должны испытываться на стенде азотом или чистым воздухом.

5.13.6. На трубопроводах подачи водорода и кислорода в ресиверах, а также на трубопроводе подачи обессоленной воды (конденсата) в питательные баки должны быть установлены газоплотные обратные клапаны.

5.13.7. Для питания электролиза должна применяться вода, по качеству соответствующая дистилляту (обессоленная вода, конденсат). При этом удельная электрическая проводимость воды должна быть не более 5 мкСм/см (или удельное сопротивление - не менее 200 кОм/см).

Для приготовления электролита в соответствии с действующими государственными стандартами должен применяться гидрат окиси калия (КОН): технический высшего сорта, поставляемый в виде чешуек, или марок ЧДА, Ч.

5.13.8. Чистота водорода, вырабатываемого электролизными установками, должна быть не ниже 99,5% (в электролизных установках типа СЭУ-4м и СЭУ-8м - не ниже 99%), а кислорода - не ниже 98,5%.

5.13.9. Температура электролита в электролизере должна быть не выше 80, а разность температур наиболее горячих и холодных ячеек электролизера не более 20°С.

5.13.10. При использовании кислорода для нужд электростанции давление в ресиверах кислорода должно автоматически поддерживаться ниже давления водорода в них.

5.13.11. Перед включением электролизера в работу все аппараты и трубопроводы должны быть продуты азотом. Чистота азота для продувки должна быть не ниже 97,5%. Продувка считается законченной, если содержание азота в выдуваемом газе достигает 97%.

Продувка аппаратуры электролизеров углекислым газом не допускается.

5.13.12. Подключение электролизера к ресиверам, находящимся под давлением водорода, должно осуществляться при превышении давления в системе электролизера по отношению к давлению в ресиверах не менее чем на 0,5 кгс/см 2 (50 кПа).

5.13.13. Для вытеснения воздуха или водорода из ресиверов должен применяться углекислый газ или азот. Воздух должен вытесняться углекислым газом до тех пор, пока содержание углекислого газа в верхней части ресиверов не достигнет 85%, а при вытеснении водорода - 95%.

Вытеснение воздуха или водорода азотом должно производиться, пока содержание азота в выдуваемом газе не достигнет 97%.

При необходимости внутреннего осмотра ресиверов они должны предварительно продуваться воздухом до тех пор, пока содержание кислорода в выдуваемом газе не достигнет 20%.

Азот или углекислый газ должен вытесняться водородом из ресиверов, пока в их нижней части содержание водорода не достигнет 99%.

5.13.14. В процессе эксплуатации электролизной установки должны проверяться:

плотность электролита - не реже 1 раза в месяц;

напряжение на ячейках электролизеров - не реже 1 раза в 6 мес.;

действие технологических защит, предупредительной и аварийной сигнализации и состояние обратных клапанов - не реже 1 раза в 3 мес.;

влажность водорода - не реже 1 раза в сутки.

5.13.15. При работе установки сорбционной осушки водорода или кислорода переключение адсорберов-осушителей должно выполняться по графику. Температура точки росы водорода после установки осушки должна быть не выше минус 5°С.

При осушке водорода методом охлаждения температура водорода на выходе из испарителя должна быть не выше минус 5°С.

Для оттаивания испаритель должен периодически по графику отключаться.

5.13.16. При отключении электролизной установки на срок до 1 ч разрешается оставлять аппаратуру под номинальным давлением газа, при этом сигнализация повышения разности давлений в регуляторах давления кислорода должна быть включена.

При отключении электролизной установки на срок до 4 ч давление газов в аппаратах должно быть понижено до 0,1 - 0,2 кгс/см 2 (10 - 20 кПа), а при отключении на срок более 4 ч аппараты и трубопроводы должны быть продуты азотом. Продувка должна выполняться также во всех случаях вывода электролизера из работы при обнаружении неисправности.

5.13.17. При работе на электролизной установке одного электролизера и нахождении другого в резерве вентили выпуска водорода и кислорода в атмосферу на резервном электролизере должны быть открыты.

5.13.18. Промывка электролизеров, проверка усилия затяжки их ячеек и ревизия арматуры должны производиться 1 раз в 6 мес.

Текущий ремонт, включающий вышеупомянутые работы, а также разборку электролизеров с заменой прокладок, промывку и очистку диафрагм и электродов и замену дефектных деталей, должен осуществляться 1 раз в 3 года.

Капитальный ремонт с заменой асбестовой ткани на диафрагменных рамах должен производиться 1 раз в 6 лет.

При отсутствии утечек электролита из электролизеров и сохранении нормальных параметров технологического режима допускается удлинение срока работы электролизной установки между текущими и капитальными ремонтами по решению технического руководителя энергообъекта.

5.13.19. Трубопроводы электролизной установки должны окрашиваться в соответствии с действующими государственными стандартами; окраска аппаратов должна выполняться по цвету окраски трубопроводов соответствующего газа; окраска ресиверов - светлой краской с кольцами по цвету окраски трубопроводов соответствующего газа.

Используя принцип получения водорода с помощью электролиза водного раствора щелочи, я решил сделать простой и компактный аппарат, удобный для работы с небольшими деталями, при пайке твердыми припоями. Благодаря малым наружным габаритам электролизера ему найдется место и на небольшом рабочем столе, а использование в качестве блока электролитания стандартного выпрямителя для подзарядки аккумуляторных батарей облегчает изготовление установки и делает работу с ней безопасной.


Относительно небольшая, но вполне достаточная производительность аппарата позволила предельно упростить конструкцию водяного затвора и гарантировать пожаро- и взрывобезопасность.


Устройство электролизера

Между двумя платами, соединенными четырьмя шпильками, размещена батарея стальных пластин-электродов, разделенных резиновыми кольцами. Внутренняя полость батареи наполовину заполнена водным раствором КОН или NaОH. Приложенное к пластинам постоянное напряжение вызывает электролиз воды и выделение газообразного водорода и кислорода.


Эта смесь отводится через надетую на штуцер полихлорвиниловую трубку в промежуточную емкость, а из нее в водяной затвор, которые сделаны из двух порожних баллончиков для заправки газовых зажигалок (можно использовать баллончики завода «Северный пресс» г. Ленинград). Газ, прошедший через помещенную там смесь воды с ацетоном в соотношении 1: 1, имеет необходимый для горения состав и, отведенный другой трубкой в форсунку - иглу от медицинского шприца, сгорает у ее выходного отверстия с температурой около 1800°С.


Рис. 1. Водяная горелка.

Для плат электролизера я использовал толстое оргстекло, толщиной 25 мм. Этот материал легко обрабатывается, химически стоек к действию электролита и позволяет визуально контролировать его уровень, чтобы при необходимости добавлять через наливное отверстие дистиллированную воду.

Пластины можно изготовить из листового металла (нержавеющая сталь, никель, декапированное или трансформаторное железо) толщиной 0,6-0,8 мм. Для удобства сборки в пластинах выдавлены круглые углубления под резиновые кольца уплотнения, глубина их при толщине кольца 5-6 мм должна быть 2-3 мм.

Кольца, предназначенные для герметизации внутренней полости и электрической изоляции пластин, вырезаются из листовой маслобензостойкой или кислотоупорной резины. Сделать это вручную несложно, но все же идеальным будет выполненный с помощью круглореза.

Четыре стальные шпильки M8, соединяющие детали, изолированы кембриком 10 мм и пропущены в соответствующие отверстия 11 мм.

Количество пластин в батарее - 9. Оно определяется параметрами блока электропитания: его мощностью и максимальным напряжением - из расчета 2 В на пластину. Потребляемый ток зависит от количества задействованных пластин (чем их меньше, тем ток больше) и от концентрации раствора щелочи. В более концентрированном растворе ток меньше, но лучше применять 4-8%-ный раствор - при электролизе он не так пенится.

Контактные клеммы припаиваются к первой и трем последним пластинам. Стандартное зарядное устройство для автомобильных аккумуляторов ВА-2, подключенное на 8 пластин, при напряжении 17 В и токе около 5 А обеспечивает необходимую производительность горючей смеси для форсунки - иглы с внутренним 0,6 мм. Оптимальное соотношение диаметра иглы форсунки и производительности электролизера устанавливается опытным путем - так, чтобы зона воспламенения смеси располагалась вне иглы. Если производительность мала или диаметр отверстия слишком велик, горение начнется в самой игле, которая от этого быстро разогреется и оплавится.

Надежным заслоном от распространения пламени по подводящей трубке внутрь электролизера является простейший водяной затвор, который сделан из двух порожних баллончиков для заправки газовых зажигалок. Достоинства их те же, что и у материала плат: легкость механической обработки, химическая стойкость и полупрозрачность, позволяющая контролировать уровень жидкости в водяном затворе. Промежуточная емкость исключает возможность смешивания электролита и состава водяного затвора в режимах интенсивной работы или под действием разряжения, возникающего при выключении электропитания. А чтобы этого избежать наверняка, по окончании работы следует сразу же отсоединять трубку от электролизёра. Штуцеры емкостей сделаны из медных трубок 4 и 6 мм, устанавливаются в верхней стенке баллончиков на резьбе. Через них же осуществляется заливка состава водяного затвора и слив конденсата из разделительной емкости. Отличная воронка для этого получится из еще одного пустого баллончика, разрезанного. пополам и с установленной на месте клапана тонкой трубкой.

Соедините короткой полихлорвиниловой трубкой 5 мм электролизер с промежуточной емкостью, последнюю - с водяным затвором, а его выходной штуцер более длинной трубкой - с форсункой-иглой (В качестве форсунки можно использовать медицинский шприц с иглой). Внутрь рукоятки (шприца) помещается огнегасительная набивка - латунная сетка, свернутая в спираль.





Рис. 2. Устройство электролизера:
1 - изолирующая полихлорвиниловая трубка 10 мм, 2 - шпилька М8 (4 шт.), 3 - гайка М8 с шайбой (4 шт.), 4 - левая плата, 5 - пробка-болт М10 с шайбой, 6 - пластина, 7 - резиновое кольцо, 8 - штуцер, 9 - шайба, 10 - полихлорвиниловая трубка 5 мм, 11 - правая плата, 12 - короткий штуцер (3 шт.), 13 - промежуточная емкость, 14 - основание, 15 - клеммы, 16 - барботажная трубка, 17 - форсунка-игла, 18 - корпус водяного затвора.

Включите выпрямитель, подрегулируйте напряжением или количеством подключаемых пластин номинальный ток и подожгите выходящий из форсунки газ.

Если вам необходима большая производительность - увеличьте количество пластин и примените более мощный блок питания - с ЛАТРом и простейшим выпрямителем. Температура пламени также поддается некоторой корректировке составом водяного затвора. Когда в нем только вода, в смеси содержится много кислорода, что в некоторых случаях нежелательно. Залив в водяной затвор метиловый спирт, смесь можно обогатить и поднять температуру до 2600° С. Для снижения температуры пламени водяной затвор заполняют смесью ацетона и воды в соотношении 1: 1. Однако в последних случаях следует не забывать пополнять и содержимое водяного затвора.



Ю. ОРЛОВ, г. Троицк, Московская обл.
Опубликовано: Моделист конструктор

Электрооборудование металлорежущих станков отличается разнообразием, сложностью и высоким уровнем автоматизации. Наиболее массовым видом металлорежущего оборудования является сравнительно небольшое число типов станков общепромышленного назначения, повсеместно распространенных на предприятиях самого различного профиля. К ним относятся универсальные станки широкого назначения для точения, сверления, нарезания резьбы и т. д.

Электрооборудование таких станков обычно однотипно и определяется использованием простых электроприводов ограниченной мощности. В системах управления широко применяют серийную электроаппаратуру (магнитные и тиристорные пускатели, автоматические выключатели, разнообразные реле и т. п.).

В качестве примера рассмотрим основные части и электрическую схему универсального токарно-винторезного станка 1К62 (рис. 143).

Рис. 143. Общий вид (а) и схема управления (б) токарно-винторезного станка 1К62:
1 - передняя бабка; 2 - шпиндель; 3 - суппорт; 4 - задняя бабка; 5 - шит управления; 6 - ходовой винт; 7 - вал; 8 - коробка подачи; 9 - станина

Привод шпинделя 2, ходовых винта 6 и вала 7 осуществляется через коробку скоростей, расположенную в передней бабке 1, и коробку подач 8 от главного электродвигателя М 1, скрытого внутри станины 9. Мощность Ml составляет 10 кВт. Кроме главного двигателя станок оборудован электродвигателем М4 (электродвигатель быстрых ходов установочных перемещений суппорта 3), электродвигателем насоса охлаждения М2 и электродвигателем привода гидросистемы М3, подключаемым с помощью штепсельного разъема ШР. Двигатель М3 используют тогда, когда на станке применяется гидрокопировальное устройство. Задняя бабка 4 станка служит для установки второго поддерживающего центра (при обработке в центрах) или режущего инструмента для обработки отверстий (сверла, метчика, развертки). Резцы устанавливают в головке суппорта, сообщающего им продольную и поперечную подачу.

Напряжение на станок подается включением пакетного выключателя Q1. Питание цепи управления осуществляется через разделительный трансформатор Т с вторичным напряжением 110 В.

Двигатель М1 запускается кнопкой SВП, с нажатием которой включается контактор КМ. Одновременно с Ml запускается двигатель М2 (двигатель насоса охлаждения) при включенном пакетном выключателе Q2 и М3 (двигатель гидросистемы) при включенном штепсельном разъеме ШР.

Работа двигателя Ml на холостом ходу ограничивается выдержкой времени реле КТ. Обмотка реле КТ включается переключателем SO, замыкающим контакты при остановке шпинделя. Если пауза в работе превышает 3 - 8 мин, то контакт реле КТ размыкается и на контактор КМ питание не подается, и двигатель Ml останавливается, ограничивая тем самым работу холостого хода, уменьшая потери электроэнергии.

Работа двигателя М4 зависит от перемещения суппорта, который нажимает на переключатель SAB, через контакт замыкает цепь катушки контактора КМБ и включает двигатель. Возврат рукоятки суппорта в среднее положение приводит к отключению двигателя М4.

Трансформатор Т обеспечивает освещение станка напряжением 36В. Защита от коротких замыканий осуществляется предохранителями F1 - F5, а от перегрузок - тепловым реле KST1, KST2 и KST5. Двигатель М4 работает кратковременно и в защите от перегрузок не нуждается.

Электрооборудование сварочных установок

Среди большого разнообразия сварочных электроустановок широкое общепромышленное применение получили установки электродуговой сварки.

Наиболее простыми являются сварочные установки (посты) для ручной дуговой сварки . Основу электрооборудования такого сварочного поста составляет источник сварочного тока. В качестве источников применяют специальные сварочные трансформаторы, выпрямители и электромашинные преобразователи переменного тока в постоянный. Кроме источника тока в состав сварочного поста входят распределительный щит, соединительные гибкие провода и электрододержатель.

Сварочные трансформаторы по конструктивным и электромагнитным схемам подразделяют на трансформаторы: с отдельным дросселем, с совмещенным дросселем, с подвижными обмотками, с магнитным шунтом и с подмагничиванием постоянным током. Дроссели, магнитные шунты, подвижные обмотки или подмагничивание постоянным током используют в этих трансформаторах для регулировки сварочного тока.


Рис. 144. Сварочный трансформатор с подвижными катушками

Наиболее часто применяют трансформаторы с подвижными обмотками, как наиболее простые и надежные (рис. 144). Сердечник такого трансформатора - стержневого типа, шихтованный. Первичная и вторичная обмотки - слоевые, с развитой поверхностью охлаждения. Каждая обмотка состоит из двух катушек, которые могут соединяться последовательно и параллельно. На магнитопроводе 1 расположены неподвижная первичная 4 и подвижная вторичная 3 обмотки, которые ходовым винтом с помощью рукоятки регулирования тока 2 перемешаются вдоль магнитопровода, изменяя магнитный поток рассеяния, а следовательно, сварочный ток. Для повышения коэффициента мощности служит конденсатор 5.


Рис. 145. Сварочный выпрямитель:
а - внешний вид; б - электрическая схема.

Сварочные выпрямители (рис. 145) применяют при сварке на постоянном токе, представляющем более широкие технологические возможности, чем переменный ток. Основными составными частями выпрямителей являются трехфазный трансформатор, состоящий из неподвижных 3 и подвижных 2 катушек с регулировкой напряжения и блок ВБ полупроводниковых вентилей 1, собранных по схеме трехфазного моста. Сварочный ток изменяется рукояткой 5. Для охлаждения сварочною агрегата используют электровентилятор 4.

Все более широкое распространение получает полуавтоматическая сварка в среде защитных газов и под флюсом. При полyaвтоматической сварке механизирована подача сварочной проволоки в зону сварки. Одним из наиболее простых по конструкции и управлению является шланговый полуавтомат ПШ для сварки под флюсом (рис. 146).


Рис. 146. Электрическая схема шагового сварочного полуавтомата ПШ

В электроприводе подающего механизма использован асинхронный электродвигатель М с короткозамкнутым ротором. Двигатель через редуктор (на схеме не показан) связан с ведущим роликом ВР механизма подачи сварочной проволоки СП. Питание двигателя осуществляется от двух однофазных трансформаторов Т1 и Т2, понижающих напряжение до безопасного значения (42 В). Реверс двигателя для установочных ходов механизма подачи осуществляется с помощью переключателя ПР. Ступенчатая регулировка скорости подачи проволоки производится изменением передаточного отношения редуктора механизма.

Для управления полуавтоматом используется однокнопочный пост SB, смонтированный на рукоятке горелки. При нажатии SB срабатывает промежуточное реле Р, которое включает двигатель подачи М и силовой контактор КМ. Во время работы полуавтомата кнопка SB, не имеющая самоблокирования, должна быть нажата. При отпускании SB сварочный трансформатор отключается. Общий выключатель и аппараты на схеме не показаны.

При сварочных работах выполняют ряд условий по соблюдению правил охраны труда и техники безопасной работы. Если электросварочные работы проводят внутри помещений, то они должны быть хорошо вентилируемые. Электросварщик должен работать в специальной одежде (брезентовом костюме, рукавицах, ботинках), для защиты глаз и лица использовать щиток-шлем или маску с защитными стеклами.

Сварочный агрегат и его аппаратуру осматривают и чистят не реже одного раза в месяц. Ремонт сварочного оборудования выполняют в соответствии с графиком, утвержденным главным энергетиком предприятия.

При текущих ремонтах установки измеряют сопротивление изоляции электрических цепей, а после капитального ремонта изоляцию испытывают на электрическую прочность.

Электролизные установки

Электролиз - это электрохимический процесс окисления-восстановления на погруженных в электролит электродах при прохождении через него электрического тока. Электролиз осуществляют в специальных аппаратах-электролизерах.

Электролизер представляет собой сосуд или систему сосудов, наполненных электролитом с размещенными в нем электродами - катодом и анодом, -соединенными соответственно с отрицательным и положительным полюсами источника постоянного тока. Процесс электрохимического окисления происходит на аноде, а восстановление - на катоде. Аноды изготовляют из графита, углеграфитового материала, окислов некоторых металлов, свинца и его сплавов, а катоды - из стали.

Современные крупные электролизные установки имеют нагрузку до 500 кА. В промышленности с помощью электрохимических процессов в электролизных установках получают простые и сложные вещества. Электролиз является основным методом промышленного получения алюминия, едкого натра, хлора и др. Путем электролиза воды получают кислород и водород. Электролиз применяют также для обработки поверхностей гальванопокрытиями (катодные процессы), полировки, травления, анодирования (анодные процессы) металлических изделий.

Металлопокрытие проводят в гальванических ваннах при напряжении 3,5 - 24 В и токах до 500 А. Электропитание ванн осуществляют от общих магистралей преобразователей, а регулирование напряжения и тока - с помощью реостатов. Если от одного генератора питается несколько ванн, то их включают параллельно с установкой реостата у каждой ванны. Шинопровод выполняют, как правило, из алюминиевых шин со сварными контактными соединениями, имеющими меньшее переходное сопротивление, чем болтовые соединения контактов.

Обслуживание электролизных установок заключается в организации периодических осмотров, измерений сопротивления изоляции всех частей установки и проведении ремонтов в соответствии с графиками ППРЭО.

Внешний осмотр установок дежурный электромонтер проводит ежесменно. При осмотре обращается внимание на температуру контактных соединений, состояние шинопроводов, отсутствие замыканий в цепи анодов и катодов, состояние поверхности изоляции шинопроводов (изоляторов, прокладок, клиц и т. д.), наличие и исправность защитных приспособлений. Кроме того измеряют потенциал на концах линий электролизных ванн по отношению к земле.

Сопротивления изоляции всех частей установки измеряют не реже одного раза в три месяца.

Капитальный ремонт всех токопроводящих элементов электролизных установок проводят не реже одного раза в год, а для тех участков, которые находятся в зоне высоких температур или подвергаются коррозии, механическим воздействиям, периодичность может быть уменьшена и устанавливается местной инструкцией.

Электротермические установки

Электрические печи служат для нагревания, расплавления или обработки металлов за счет теплового эффекта электрических явлений. По способу преобразования электрической энергии в тепловую различают печи дуговые, индукционные и сопротивления.

В состав электропечной установки входят электрическая печь, электропечной трансформатор, выпрямитель, генератор повышенной частоты; коммутационное оборудование (выключатель, разъединитель и т. д.) и вспомогательное оборудование (дроссели, конденсаторы, анодные выпрямители и др.). Электрические печи являются энергоемкими установками.

Дуговые электропечи применяют для плавки стали, чугуна, меди и других металлов. Мощность этих печей достигает 80000 кВт. Участок электросети от трансформатора до электродов печи состоит из шин, гибких соединений и токопровода. В этой сети ток достигает несколько десятков тысяч ампер.

Индукционные однофазные печи (рис. 147) работают при различных частотах тока (50-75 000 Гц). Нагрев происходит за счет токов, индуктируемых в металле.


Рис. 147. Схема установки индукционного нагрева:
1 - источник питания; 2 - конденсатор; 3 - индуктор; 4 - нагреваемое тело; 5 - тигель.

Индукционные печи нормальной частоты представляют собой трансформатор, в котором роль вторичной обмотки выполняет металлическая ванна в виде замкнутого кольца. Мощность этих печей достигает 17000 кВт.

Широкое применение имеют установки индукционного нагрева для сушки электрических машин, аппаратов, подогрева жидкостей в трубопроводах и т. д. Печи, работающие с частотой 2500 - 8000 Гц, используются для закалки металлов.

Осмотр электропечных установок производят ежедневно. Во время осмотров удаляют пыль, грязь, проверяют состояние контактов электроде держателей, шинопроводов, кабелей, проводов, смазку механизмов. Особое внимание обращают на работу и состояние блокировочных устройств: нарушение их работы может привести к нарушению технологии, поломке оборудования и к несчастным случаям. Периодически в дуговых печах очищают окалину с контактных поверхностей электрододержателей, из трансформаторов печных установок отбирают для анализа пробы масла.

При осмотре печей сопротивления обращают внимание на работу нагревательных элементов. Работа печей с неисправными нагревательными элементами, с нагревателями, установленными на другие марки сплава; отключенными элементами; неравномерной нагрузкой по фазам на печах с керамическими нагревателями не допускается. Каждая установка электрической печи сопротивления должна иметь инструкцию по обслуживанию. Весь обслуживающий персонал проходит специальное обучение по эксплуатации этих печей и соблюдению правил охраны труда.

Ремонты электропечных установок проводят в соответствии с графиком, установленным главным энергетиком предприятия.

Аккумуляторные батареи

Основными частями кислотного аккумулятора являются бак с электролитом и свинцовые пластины, изолированные друг от друга сепараторами. В качестве положительных используют свинцовые пластины с большим числом ребер, увеличивающих рабочую поверхность, а в качестве отрицательных - пластины коробчатой формы. Электролит представляет собой смесь серной кислоты с дистиллированной водой. Для пополнения в аккумуляторах электрической энергии служат зарядные и подзарядные устройства.

Как правило, аккумуляторные батареи эксплуатируются и режиме постоянного подзаряда. В этом случае заряженную батарею включают на шины параллельно с постоянно работающим зарядным устройством. Метод постоянного подзаряда повышает надежность работы электроустановки, обеспечивает резерв в случае выхода из строя зарядного устройства. Аккумуляторную батарею поддерживают в полностью заряженном состоянии. Уровень напряжения на каждом элементе должен быть 2,1 -2,2 В. Плотность электролита поддерживают на уровне 1,24.

Щелочные аккумуляторы подразделяются на кадмиево-никелевые и железо-никелевые. Баки изготовляют из никелированного железа. Электролит составляют в стальной или эмалированной посуде и заменяют ежегодно. Для этого аккумуляторы разряжают до напряжения 1 В, сливают электролит, промывают дистиллированной водой и сразу заливают свежим электролитом. Через 2 ч проверяют плотность электролита и доводят до нормы (при t = 20 °С она должна быть равна 1.19-1,21) и включают на зарядку. В начале зарядки напряжение аккумулятора резко повышается с 1 В до 1,6 В, потом медленно возрастает до 1,75 В. Окончанием заряда является установившееся напряжение в течение 20 - 30 мин (у железо-никелевых - 1,8-1,9 В и у кадмиево-никелевых 1,75-1,85 В).

При обслуживании аккумуляторных установок строго соблюдают правила эксплуатации по обеспечению исправной и безаварийной работы и безопасному ее обслуживанию. В помещении аккумуляторных батарей поддерживают чистоту и следят за работой приточно-вытяжной вентиляции. Вентиляция должна быть включена во все время зарядки батареи и 1,5 - 2 ч после ее окончания.

В этих помещениях запрещено устанавливать предохранители, штепсельные розетки, автоматы, люминесцентные лампы, выключатели, у которых может образоваться искра.

Осмотр батарей проводят в следующие сроки: дежурный электромонтер - ежедневно, мастер - два раза в месяц, специалист-аккумуляторщик - по графику.

Все металлические части в помещении батареи окрашивают кислотоупорной краской. Покрашенные и непокрашенные шины аккумуляторных батарей смазывают вазелином.

При работах с кислотой или щелочью обязательно следует надевать костюм из грубой шерсти, защитные очки, резиновые перчатки, брюки костюма заправлять поверх голенищ резиновых сапог. Переносить бутыли с кислотой или щелочью необходимо вдвоем на специальных носилках, в которых бутыль закреплена. Во время составления раствора кислоту следует лить тонкой струей в сосуд с дистиллированной водой (а не наоборот!). Пораженные кислотой участки кожи промывают струей холодной воды и нейтрализуют 5 %-ным раствором соды, а при ожоге щелочью - промывают струей воды и нейтрализуют раствором борной кислоты.

В настоящее время в России все большее количество объектов водоснабжения и водоотведения, а также производств, отказываются от применения товарного жидкого хлора и гипохлоритов, делая выбор в пользу организации собственного синтеза необходимых реагентов непосредственно на объектах применения.

Для производства требуется хлорид натрия (соль), вода, электроэнергия.

Причины подобного отказа:

1. Жидкий хлор очень опасен .

Несмотря на невысокую стоимость хлора, мероприятия и затраты, связанные с его использованием, в значительной степени усложняют и удорожают весь производственный процесс.

2. Товарный гипохлорит натрия (ГПХН 19%) очень дорог .

Стоимость 1 т. ГПХН марки А не превышает 20-30 тыс. руб. Однако, количество гипохлорита натрия, эквивалентное 1 т. хлора, составляет уже 100-150 тыс. руб. (так как гипохлорит содержит всего 15-19% активного хлора и имеет тенденцию к дальнейшему разложению).

Преимущества электролизного оборудования:

  • отказ от расходов на обеспечение безопасности при транспортировке и хранении;
  • при работе электролизного оборудования невозможны аварии, связанные с утечкой большого количества реагента. Объекты эксплуатации электролизных установок для синтеза хлорреагентов не относятся к ОПО и не включаются в соответствующий реестр;
  • независимость от поставщика – реагент производится в необходимом количестве, производительность регулируется, что повышает энергоэффективность объекта;
  • дешевое сырье – для синтеза можно использовать самую дешевую техническую соль. Это потребует установки дополнительного оборудования для очистки солевого раствора, поступающего в электролизеры, однако, эти затраты окупаются менее чем за 1 год за счет значительной экономии на сырье;
  • получаемый реагент дешевле товарного;
  • для объектов водоснабжения, использующих в качестве основного метода обеззараживания УФ установки – при внедрении УФ оборудования невозможно полностью отказаться от использования хлорреагента, так как необходимо обеспечить санитарное состояние сооружений и сетей, а также безопасность транспортировки воды потребителю. Электролизные установки совместно с УФ оборудованием полностью удовлетворяют потребность в хлоре, объект при этом исключается из реестра ОПО.

Электролизные установки производят разные реагенты:

  • хлор или хлорную воду (Аквахлор, Аквахлор-Бекхофф, Аквахлор-Мембрана/Диафрагма);
  • комбинированный дезинфектант с повышенной эффективностью – раствор оксидантов, содержащий хлор, диоксид хлора, озон (Аквахлор, Аквахлор-Бекхофф);
  • низкоконцентрированный ГПХН 0,8% (ЛЭТ-ЭПМ, Аквахлор, Аквахлор-Бекхофф);
  • высококонцентрированный ГПХН 15-19% (Аквахлор-Мембрана/Диафрагма).

Для целей обеззараживания воды подходят все эти реагенты. Ограничением является только pH подвергаемой обеззараживанию воды в точке ввода реагента – для воды с pH выше 7,5 рекомендуется использовать хлорную воду вместо гипохлорита, который малоэффективен в щелочной среде.

Остановимся подробнее на каждом типе оборудования ООО «ЛЭТ»:

Аквахлор и Аквахлор-Бекхофф:

  • получаемый реагент обладает повышенной эффективностью;
  • отдельные модули имеют небольшую производительность. Что позволяет гибко реагировать на
  • потребность в реагенте. Оптимальная производительность комплекса – до 250-500 кг активного хлора в сутки;
  • периодичность замены реакторов – 1 раз в 3-5 лет;
  • простота обслуживания.

ЛЭТ-ЭПМ:

  • неограниченная производительность комплексов;
  • простота эксплуатации и невысокие требования к качеству сырья;
  • периодичность замены (перепокрытия) электродного блока – 1 раз в год;
  • реагент подходит для большинства объектов.

Аквахлор-Диафрагма:

  • возможность получения хлорной воды и концентрированного ГПХН 19%, а также одновременного получения этих реагентов;
  • периодичность замены электродного покрытия и диафрагмы – не более 1 раза в 10 лет;
  • высокие требования к качеству солевого раствора;
  • возможность промывки диафрагмы и возвращения в работу в случае загрязнения солевым раствором несоответствующего качества;

Аквахлор-Мембрана:

  • неограниченная производительность комплекса (но не менее 50-100 кг/сут.);
  • возможность получения хлора и концентрированного ГПХН 19% высокой чистоты, пригодной для синтеза;
  • периодичность замены электродного покрытия и мембраны – не более 1 раза в 10 лет;
  • очень высокие требования к качеству солевого раствора;
  • в случае загрязнения мембраны требуется ее замена на новую;
  • обслуживание оборудования требует квалифицированного персонала.

Себестоимость конечного продукта (по возрастанию, от меньшей к большей):

  • Аквахлор-Диафрагма
  • Аквахдлор-Мембрана
  • Аквахлор/Аквахлор-Бекхофф
  • ЛЭТ-ЭПМ

Сущность электролизного технологического процесса (рис.), заключается в том, что при протекании электрического постоянного тока через электролитическую ванну может иметь место одно из явлений:

    Либо происходит осаждение частиц вещества из электролита на электродах ванны (электроэкстракция)

    Либо имеет место перенос вещества с одного электрода на другой через электролит (электролитическое рафинирование)

ЗАКЛАДКА

В качестве электролита используется растворы солей, кислот и оснований как правило в воде.

В электролите имеет место ионная проводимость. При подаче напряжения на электроды ионы движутся к электродам, нейтрализуются и оседают на них. При этом имеет место либо электроэкстракция либо электролитическое рафинирование.

Основное значение имеет при выборе понятие нормального потенциала.

Если электрод изготовлен из такого же металла как электролит, то при некотором потенциале между электродом и электролитом нет ни первого, ни второго процесса. Такой потенциал называется нормальный.

Если на электроды подать более отрицательный потенциал, то начинается электроэкстракция.

Если более положительный, то электролитическое рафинирование.

Электролиз применяют для получения или очистки металлов.

В количественном отношении электролизный процесс описывается тем же самым законом Фарадея.

U эл =E р +E п +U э +U с

E р - напряжение разложения

E п – сумма анодного и катодного ПН

U э – падение напряжения на электролите

U с – падение напряжения на шинах контактов электродов

U э =I∙R вн

U э =I∙(R ш +R к +R э)

P эл =I∙(E p +E п +U э +U с)

τ – время технологического процесса

E p – полезная работа

Эффективность электролизного процесса описывается массой вещества.

Сырьем для получения Znслужит цинковая обманкаZnS. Этот минерал сначала подвергают окислению, обжигу, а затем подвергают выщелачиванию.

ZnSO 4 +H 2 O(5÷6%) Проводимость у такого раствора невысока, поэтому добавляют к этому раствору 10÷12%H 2 SO 4

Электролитическая ванна выполнена из дерева или бетона и изолирована от земли.

Электролизный процесс проводится при t= 35÷40 0 C

j= 400÷600 А/м 2

На катоде появляется ПН – 1,1 В (нормальный потенциал -0,76 В)

Возникает электроэкстракция – осаждение Znна катоде.

1/g э = 3500 кВт∙ч/т

τ = 40÷50 часов

После этого Znсдирают с катода и переплавляют.

Получение Al

В качестве электролита используются не раствор, а расплав. В качестве сырья используется глинозем Al 2 O 3

t пл = 2050 0 С

Расплав этого материала имеет низкую проводимость. Поэтому в качестве электролита используют глинозем и криолит Na 3 AlF 6

t пл = 950 0 С

Ванны и электроды изготавливают из угля или графита.

I= 200÷250 кА

j= 7÷10 кА/м 2

1/g э = 14000÷16000 кВт∙ч/т

Гальванотехника

Это электротехнологический процесс осаждения металла на поверхность как металла, так и не металлических изделий с помощью электролиза.

Толщина покрытия не превышает десятков мкм.

Различают 2 разновидности:

    гальваностедия

    гальванопластика

Гальваностедия – омеднение, золочение, золочение, хромирование, никелирование…

Перед обработкой поверхность тщательно очищают, затем осуществляют травление кислотой H 2 SO 4 ,HCl. В качестве электролита используется раствор соли наносимого металла. Иногда добавляют кислоты и щелочи для повышения проводимости. Анод изготавливается из наносимого металла, изделие является катодом.

Происходит перенос металла с анода на катод, обработка происходит при небольших плотностях тока, не больше десятков А/м 2 .

Гальванопластика – получение точных копий с изделий.

Электродинамический эффект и электрический ветер

При воздействии ЭП на газовые и жидкие среды наблюдается их движение. Оно обусловлено передачей кинетической энергии при соударении ионов среды с нейтральными молекулами.

Это явление получило название электрический ветер для газовых сред.

Электрический ветер всегда направлен от электрода с меньшим радиусом кривизны.

Сила воздействия на электрический разряд оценивается просто:

F=E∙ρρ– плотность заряда

Установлены некоторые закономерности электрического ветра:


Импульсные установки

1.Установки электроэрозионной обработки.

2.Установки электрогидравлической обработки.

3.Установки электроимпульсной сварки.

4.Устновки магнитоимпульсной обработки металла.

5.Установки импульсной электрохимической обработки.

1.Установк электроэрозионной обработки.

Работа этих устройств основана на явлении электроэрозии,т.е разрушение обрабатываемого материала(Ме) под действием импульсов тока, протекающего между электродом обрабатываемой поверхностью, как правило в диэлектрической среде.

При протекании импульсов тока в искровом канале происходит превращение электроэнергии в тепло в искровом канале между электродам и поверхностью. Происходит нагрев, и его удаление.

Основные параметры обработки:

Частота следования импульсов от сотен до сотен тысяч Гц,

Амплитуда тока от долей до тысяч А,

Длительность импульсов от долей до нескольких тысяч секунд.

Изменением этих параметров устанавливается необходимый режим обработки. Схема1.

1-вертикальная стойка станка

2-рабочая ванна

3-стол для установки рабочей ванны, которая обеспечивает перемещение рабочей ванны по двум координатам в горизонтальной плоскости.

4-обратываемое электрод-изделие, располагающееся внутри рабочей ванны и перемещающейся вместе с ней.

5-устройство для вертикального перемещения.

6-источник высокого импульсного напряжения (периодическое, не ниже 1кВ).

7-система снабжения рабочей диэлектрической жидкостью(обычно трансформаторное масло). Система включает в себя насосы, фильтры, системы возврата жидкости, охладители.

8-электрод-инструмент, изготавливается из более тугоплавкого материала, чем электрод-изделие (вольфрам, графит).

Работа установки

Электрод-инструмент (8) подводится к поверхности изделия (4) и включается источник напряжения (6).

Т.е. к промежутку между электродом-инструментом (8), изделием (4) прикладываются импульсы высокого напряжения и в этом промежутке возникают электроискровые разряды. Эти каналы являются очень концентрированными преобразователями электрической энергии в тепловую с объемной плотностью 10^12 Дж/м3.

При этом плотность мощности 1-10^7 Вт/см2. Выделившаяся тепловая энергия приводит к нагреву, расплавлению, испарению металла изделия и его удаление с помощью рабочей жидкости. При этом многократные электрические разряды проходят послойно всю обрабатываемую поверхность. В итоге в изделии образуются углубления, которые копируют форму электрода.

В качестве источников питания используются импульсные источники питания на основе емкостных накопителей энергии.

Схема 2 .

Питание происходит от сети 220В с помощью трансформатора тока. Повышенное напряжение выпрямляется с помощью выпрямителя VD, выпрямленное напряжение используется для периодической загрузки батареи конденсатораCб. После зарядки этой емкости образуется разрядный контур, содержащий индуктивностьLpи рабочий искровой промежуток. Емкость разряжается, в разрядном контуре протекает токLp. После этого тиристорVDзапирается и процесс зарядки емкости Сб повторяется. Управление режимом обработки (шероховатость, производительность) производится путем измения мощности и частоты следования импульсов токаip.

Такие установки имеют высокую производительность и высокое качество обработки. При некоторых видах обработки такие установки незаменимы.

Недостаток: наблюдается износ электрода-инструмента.

Установки электрогидравлической обработки

Такие установки основаны на применении электрогидравлического эффекта.

Электрогидравлический эффект заключается в преобразовании электроэнергии, запасённой в ёмкостном накопителе в механическую энергию ударной волны при помощи мощного искрового разряда, который создаётся в жидкой среде (чаще воде).

Электрическая схема практически такая же как в предыдущем случае. Отличие в длине разрядного промежутка (она больше).

Параметры технологического процесса:

1)
- крутизна нарастающего тока;

2) до 250 кА;

3) до 100 МВт;

4) до
Дж.

При таких параметрах искровой канал имеет характер взрыва.

Температура канала
К; Давление
МПа.

Давление передаётся жидкости.

Области применения:

а) выбивка формовочных стержней в отливках сложной формы;

б) очистка литья и различных поверхностей от окалины;

в)дробление, измельчение различных материалов;

г) утилизация железобетонных изделий.

Установки импульсной сварки

Предназначены для получения неразъёмных сварных металлических соединений путём сжатия места соединения и нагревания его до температуры плавления путём пропускания импульсного тока.

Схема процесса такая же как и в предыдущем случае. Отличие только в нагрузке. Детали практически не нагреваются.

Преимущество – локализация термического воздействия, исключается разрушение мелких сварных деталей.

Устройства магнитно-импульсной обработки

Эти установки основаны на преобразовании ЭЭ в энергию импульсного МП, затем происходит взаимодействие импульсных полей, создаваемых инструментом – индуктором, с наведённым им Эл. Током в заготовке.

В результате энергия МП превращается в механическую энергию, которая необходимым образом деформирует заготовку.

ЗУ – зарядное устройство;

- батарея индуктивностей (создаёт импульс нужной формы);

ИН – инструмент индуктор;

З – заготовка.

Многоконтурные и одноконтурные установки

Многоконтурная установка содержит один или несколько инструментов – индукторов, выполненных в виде соленоидов.

МП соленоида, создаваемое током наводит в заготовке ток. Токи взаимодействуют и обеспечивают механические усилия и деформацию заготовки.

- собственная индуктивность ИИ;

- активное сопротивление ИИ;

- активное сопротивление;

- коэффициент взаимоиндукции;

- индуктивность и активное сопротивление заготовки.

В схеме прот. ПП, он определяется методом ТОЭ. Технология операции по такой схеме используется в 3 варианте:

2) раздача (индукция внутри заготовки);

3) листовая формовка (деформируется плоская заготовка).

Одноконтурная схема:

В этом случае разрядный ток протекает непосредственно через заготовку. Заготовка – часть ИИ.

разветвляется наи. Взаимодействие токов приводит к деформации заготовки, и она приобретает форму, показанную пунктиром.

Преимущества:


Недостатки:

    Материал должен иметь высокую электропроводность;

    Необходимость установки проводящих прокладок при образовании материалов, плохо проводящих эл. ток;

    Трудности обработки поверхностей, имеющих разрыв для эл. тока;

    Трудности с обработкой массивных заготовок.

Установки импульсной электрохимической обработки. Это рассмотренные выше электрохимические технологические процессы, в которых вместо постоянного напряжения применяется импульсное.

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...