Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Какое суммарное уравнение процесса фотосинтеза представлено правильно. Суммарное уравнение фотосинтеза

Фотосинтез - это преобразование энергии света в энергию химических связей органических соединений.

Фотосинтез характерен для растений, в том числе всех водорослей, ряда прокариот, в том числе цианобактерий, некоторых одноклеточных эукариот.

В большинстве случаев при фотосинтезе в качестве побочного продукта образуется кислород (O 2). Однако это не всегда так, поскольку существует несколько разных путей фотосинтеза. В случае выделения кислорода его источником является вода, от которой на нужды фотосинтеза отщепляются атомы водорода.

Фотосинтез состоит из множества реакций, в которых участвуют различные пигменты, ферменты, коферменты и др. Основными пигментами являются хлорофиллы, кроме них - каротиноиды и фикобилины.

В природе распространены два пути фотосинтеза растений: C 3 и С 4 . У других организмов есть своя специфика реакций. Все, что объединяет эти разные процессы под термином «фотосинтез», – во всех них в общей сложности происходит преобразование энергии фотонов в химическую связь. Для сравнения: при хемосинтезе происходит преобразование энергии химической связи одних соединений (неорганических) в другие - органические.

Выделяют две фазы фотосинтеза - световую и темновую. Первая зависит от светового излучения (hν), которое необходимо для протекания реакций. Темновая фаза является светонезависимой.

У растений фотосинтез протекает в хлоропластах. В результате всех реакций образуются первичные органические вещества, из которых потом синтезируются углеводы, аминокислоты, жирные кислоты и др. Обычно суммарную реакцию фотосинтеза пишут в отношении глюкозы - наиболее распространенного продукта фотосинтеза :

6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2

Атомы кислорода, входящие в молекулу O 2 , берутся не из углекислого газа, а из воды. Углекислый газ – источник углерода , что более важно. Благодаря его связыванию у растений появляется возможность синтеза органики.

Представленная выше химическая реакция есть обобщенная и суммарная. Она далека от сути процесса. Так глюкоза не образуется из шести отдельных молекул углекислоты. Связывание CO 2 происходит по одной молекуле, которая сначала присоединяется к уже существующему пятиуглеродному сахару.

Для прокариот характерны свои особенности фотосинтеза. Так у бактерий главный пигмент - бактериохлорофилл, и не выделяется кислород, так как водород берется не из воды, а часто из сероводорода или других веществ. У сине-зеленых водорослей основным пигментом является хлорофилл, и при фотосинтезе выделяется кислород.

Световая фаза фотосинтеза

В световой фазе фотосинтеза происходит синтез АТФ и НАДФ·H 2 за счет лучистой энергии. Это происходит на тилакоидах хлоропластов , где пигменты и ферменты образуют сложные комплексы для функционирования электрохимических цепей, по которым передаются электроны и отчасти протоны водорода.

Электроны в конечном итоге оказываются у кофермента НАДФ, который, заряжаясь отрицательно, притягивает к себе часть протонов и превращается в НАДФ·H 2 . Также накопление протонов по одну сторону тилакоидной мембраны и электронов по другую создает электрохимический градиент, потенциал которого используется ферментом АТФ-синтетазой для синтеза АТФ из АДФ и фосфорной кислоты.

Главными пигментами фотосинтеза являются различные хлорофиллы. Их молекулы улавливают излучение определенных, отчасти разных спектров света. При этом некоторые электроны молекул хлорофилла переходят на более высокий энергетический уровень. Это неустойчивое состояние, и по-идее электроны путем того же излучения должны отдать в пространство полученную из вне энергию и вернуться на прежний уровень. Однако в фотосинтезирующих клетках возбужденные электроны захватываются акцепторами и с постепенным уменьшением своей энергии передаются по цепи переносчиков.

На мембранах тилакоидов существуют два типа фотосистем, испускающих электроны при действия света. Фотосистемы представляют собой сложный комплекс большей частью хлорофильных пигментов с реакционным центром, от которого и отрываются электроны. В фотосистеме солнечный свет ловит множество молекул, но вся энергия собирается в реакционном центре.

Электроны фотосистемы I, пройдя по цепи переносчиков, восстанавливают НАДФ.

Энергия электронов, оторвавшихся от фотосистемы II, используется для синтеза АТФ. А сами электроны фотосистемы II заполняют электронные дырки фотосистемы I.

Дырки второй фотосистемы заполняются электронами, образующимися в результате фотолиза воды . Фотолиз также происходит при участии света и заключается в разложении H 2 O на протоны, электроны и кислород. Именно в результате фотолиза воды образуется свободный кислород. Протоны участвуют в создании электрохимического градиента и восстановлении НАДФ. Электроны получает хлорофилл фотосистемы II.

Примерное суммарное уравнение световой фазы фотосинтеза:

H 2 O + НАДФ + 2АДФ + 2Ф → ½O 2 + НАДФ · H 2 + 2АТФ

Циклический транспорт электронов

Выше описана так называемый нецикличная световая фаза фотосинтеза . Есть еще циклический транспорт электронов, когда восстановления НАДФ не происходит . При этом электроны от фотосистемы I уходят на цепь переносчиков, где идет синтез АТФ. То есть эта электрон-транспортная цепь получает электроны из фотосистемы I, а не II. Первая фотосистема как бы реализует цикл: в нее возвращаются ей же испускаемые электроны. По дороге они тратят часть своей энергии на синтез АТФ.

Фотофосфорилирование и окислительное фосфорилирование

Световую фазу фотосинтеза можно сравнить с этапом клеточного дыхания - окислительным фосфорилированием, которое протекает на кристах митохондрий. Там тоже происходит синтез АТФ за счет передачи электронов и протонов по цепи переносчиков. Однако в случае фотосинтеза энергия запасается в АТФ не для нужд клетки, а в основном для потребностей темновой фазы фотосинтеза. И если при дыхании первоначальным источником энергии служат органические вещества, то при фотосинтезе – солнечный свет. Синтез АТФ при фотосинтезе называется фотофосфорилированием , а не окислительным фосфорилированием.

Темновая фаза фотосинтеза

Впервые темновую фазу фотосинтеза подробно изучили Кальвин, Бенсон, Бэссем. Открытый ими цикл реакций в последствии был назван циклом Кальвина, или C 3 -фотосинтезом. У определенных групп растений наблюдается видоизмененный путь фотосинтеза – C 4 , также называемый циклом Хэтча-Слэка.

В темновых реакциях фотосинтеза происходит фиксация CO 2 . Темновая фаза протекает в строме хлоропласта.

Восстановление CO 2 происходит за счет энергии АТФ и восстановительной силы НАДФ·H 2 , образующихся в световых реакциях. Без них фиксации углерода не происходит. Поэтому хотя темновая фаза напрямую не зависит от света, но обычно также протекает на свету.

Цикл Кальвина

Первая реакция темновой фазы – присоединение CO 2 (карбоксилировани е ) к 1,5-рибулезобифосфату (рибулезо-1,5-дифосфат ) – РиБФ . Последний представляет собой дважды фосфорилированную рибозу. Данную реакцию катализирует фермент рибулезо-1,5-дифосфаткарбоксилаза, также называемый рубиско .

В результате карбоксилирования образуется неустойчивое шестиуглеродное соединение, которое в результате гидролиза распадается на две трехуглеродные молекулы фосфоглицериновой кислоты (ФГК) – первый продукт фотосинтеза. ФГК также называют фосфоглицератом.

РиБФ + CO 2 + H 2 O → 2ФГК

ФГК содержит три атома углерода, один из которых входит в состав кислотной карбоксильной группы (-COOH):

Из ФГК образуется трехуглеродный сахар (глицеральдегидфосфат) триозофосфат (ТФ) , включающий уже альдегидную группу (-CHO):

ФГК (3-кислота) → ТФ (3-сахар)

На данную реакцию затрачивается энергия АТФ и восстановительная сила НАДФ · H 2 . ТФ - первый углевод фотосинтеза.

После этого большая часть триозофосфата затрачивается на регенерацию рибулозобифосфата (РиБФ), который снова используется для связывания CO 2 . Регенерация включает в себя ряд идущих с затратой АТФ реакций, в которых участвуют сахарофосфаты с количеством атомов углерода от 3 до 7.

В таком круговороте РиБФ и заключается цикл Кальвина.

Из цикла Кальвина выходит меньшая часть образовавшегося в нем ТФ. В перерасчете на 6 связанных молекул углекислого газа выход составляет 2 молекулы триозофосфата. Суммарная реакция цикла с входными и выходными продуктами:

6CO 2 + 6H 2 O → 2ТФ

При этом в связывании участвую 6 молекул РиБФ и образуется 12 молекул ФГК, которые превращаются в 12 ТФ, из которых 10 молекул остаются в цикле и преобразуются в 6 молекул РиБФ. Поскольку ТФ - это трехуглеродный сахар, а РиБФ - пятиуглеродный, то в отношении атомов углерода имеем: 10 * 3 = 6 * 5. Количество атомов углерода, обеспечивающих цикл не изменяется, весь необходимый РиБФ регенерируется. А шесть вошедших в цикл молекул углекислоты затрачиваются на образование двух выходящих из цикла молекул триозофосфата.

На цикл Кальвина в расчете на 6 связанных молекул CO 2 затрачивается 18 молекул АТФ и 12 молекул НАДФ · H 2 , которые были синтезированы в реакциях световой фазы фотосинтеза.

Расчет ведется на две выходящие из цикла молекулы триозофосфата, так как образующаяся в последствии молекула глюкозы, включает 6 атомов углерода.

Триозофосфат (ТФ) - конечный продукт цикла Кальвина, но его сложно назвать конечным продуктом фотосинтеза, так как он почти не накапливается, а, вступая в реакции с другими веществами, превращается в глюкозу, сахарозу, крахмал, жиры, жирные кислоты, аминокислоты. Кроме ТФ важную роль играет ФГК. Однако подобные реакции происходят не только у фотосинтезирующих организмов. В этом смысле темновая фаза фотосинтеза – это то же самое, что цикл Кальвина.

Из ФГК путем ступенчатого ферментативного катализа образуется шестиуглеродный сахар фруктозо-6-фосфат , который превращается в глюкозу . В растениях глюкоза может полимеризоваться в крахмал и целлюлозу. Синтез углеводов похож на процесс обратный гликолизу.

Фотодыхание

Кислород подавляет фотосинтез. Чем больше O 2 в окружающей среде, тем менее эффективен процесс связывания CO 2 . Дело в том, что фермент рибулозобифосфат-карбоксилаза (рубиско) может реагировать не только с углекислым газом, но и кислородом. В этом случае темновые реакции несколько иные.

Фосфогликолат - это фосфогликолевая кислота. От нее сразу отщепляется фосфатная группа, и она превращается в гликолевую кислоту (гликолат). Для его «утилизации» снова нужен кислород. Поэтому чем больше в атмосфере кислорода, тем больше он будет стимулировать фотодыхание и тем больше растению будет требоваться кислорода, чтобы избавиться от продуктов реакции.

Фотодыхание - это зависимое от света потребление кислорода и выделение углекислого газа. То есть обмен газов происходит как при дыхании, но протекает в хлоропластах и зависит от светового излучения. От света фотодыхание зависит лишь потому, что рибулозобифосфат образуется только при фотосинтезе.

При фотодыхании происходит возврат атомов углерода из гликолата в цикл Кальвина в виде фосфоглицериновой кислоты (фосфоглицерата).

2 Гликолат (С 2) → 2 Глиоксилат (С 2) →2 Глицин (C 2) - CO 2 → Серин (C 3) →Гидроксипируват (C 3) → Глицерат (C 3) → ФГК (C 3)

Как видно, возврат происходит не полный, так как один атом углерода теряется при превращении двух молекул глицина в одну молекулу аминокислоты серина, при этом выделяется углекислый газ.

Кислород необходим на стадиях превращения гликолата в глиоксилат и глицина в серин.

Превращения гликолата в глиоксилат, а затем в глицин происходят в пероксисомах, синтез серина в митохондриях. Серин снова поступает в пероксисомы, где из него сначала получается гидрооксипируват, а затем глицерат. Глицерат уже поступает в хлоропласты, где из него синтезируется ФГК.

Фотодыхание характерно в основном для растений с C 3 -типом фотосинтеза. Его можно считать вредным, так как энергия бесполезно тратится на превращения гликолата в ФГК. Видимо фотодыхание возникло из-за того, что древние растения были не готовы к большому количеству кислорода в атмосфере. Изначально их эволюция шла в атмосфере богатой углекислым газом, и именно он в основном захватывал реакционный центр фермента рубиско.

C 4 -фотосинтез, или цикл Хэтча-Слэка

Если при C 3 -фотосинтезе первым продуктом темновой фазы является фосфоглицериновая кислота, включающая три атома углерода, то при C 4 -пути первыми продуктами являются кислоты, содержащие четыре атома углерода: яблочная, щавелевоуксусная, аспарагиновая.

С 4 -фотосинтез наблюдается у многих тропических растений, например, сахарного тростника, кукурузы.

С 4 -растения эффективнее поглощают оксид углерода, у них почти не выражено фотодыхание.

Растения, в которых темновая фаза фотосинтеза протекает по C 4 -пути, имеют особое строение листа. В нем проводящие пучки окружены двойным слоем клеток. Внутренний слой - обкладка проводящего пучка. Наружный слой - клетки мезофилла. Хлоропласты клеток слоев отличаются друг от друга.

Для мезофильных хлоропласт характерны крупные граны, высокая активность фотосистем, отсутствие фермента РиБФ-карбоксилазы (рубиско) и крахмала. То есть хлоропласты этих клеток адаптированы преимущественно для световой фазы фотосинтеза.

В хлоропластах клеток проводящего пучка граны почти не развиты, зато высока концентрация РиБФ-карбоксилазы. Эти хлоропласты адаптированы для темновой фазы фотосинтеза.

Углекислый газ сначала попадает в клетки мезофилла, связывается с органическими кислотами, в таком виде транспортируется в клетки обкладки, освобождается и далее связывается также, как у C 3 -растений. То есть C 4 -путь дополняет, а не заменяет C 3 .

В мезофилле CO 2 присоединяется к фосфоенолпирувату (ФЕП) с образованием оксалоацетата (кислота), включающего четыре атома углерода:

Реакция происходит при участии фермента ФЕП-карбоксилазы, обладающего более высоким сродством к CO 2 , чем рубиско. К тому же ФЕП-карбоксилаза не взаимодействует с кислородом, а значит не затрачивается на фотодыхание. Таким образом, преимущество C 4 -фотосинтеза заключается в более эффективной фиксации углекислоты, увеличению ее концентрации в клетках обкладки и следовательно более эффективной работе РиБФ-карбоксилазы, которая почти не расходуется на фотодыхание.

Оксалоацетат превращается в 4-х углеродную дикарбоновую кислоту (малат или аспартат), которая транспортируется в хлоропласты клеток обкладки проводящих пучков. Здесь кислота декарбоксилируется (отнятие CO 2), окисляется (отнятие водорода) и превращается в пируват. Водород восстанавливает НАДФ. Пируват возвращается в мезофилл, где из него регенерируется ФЕП с затратой АТФ.

Оторванный CO 2 в хлоропластах клеток обкладки уходит на обычный C 3 -путь темновой фазы фотосинтеза, т. е. в цикл Кальвина.

Фотосинтез по пути Хэтча-Слэка требует больше энергозатрат.

Считается, что C 4 -путь возник в эволюции позже C 3 и во многом является приспособлением против фотодыхания.

Процесс преобразования лучистой энергии Солнца в химическую с использованием последней в синтезе углеводов из углекислого газа. Это единственный путь улавливания солнечной энергии и использования ее для жизни на нашей планете.

Улавливание и преобразование солнечной энергии осуществляют многообразные фотосинтезирующие организмы (фотоавтотрофы). К ним относятся многоклеточные организмы (высшие зеленые растения и низшие их формы - зеленые, бурые и красные водоросли) и одноклеточные (эвгленовые, динофлагелляты и диатомовые водоросли). Большую группу фотосинтезирующих организмов составляют прокариоты - сине-зеленые водоросли, зеленые и пурпурные бактерии. Примерно половина работы по фотосинтезу на Земле осуществляется высшими зелеными растениями, а остальная половина - главным образом одноклеточными водорослями.

Первые представления о фотосинтезе были сформированы в 17 веке. В дальнейшем, по мере появления новых данных, эти представления многократно изменялись [показать] .

Развитие представлений о фотосинтезе

Начало изучению фотосинтеза было положено в 1630 году, когда ван Гельмонт показал, что растения сами образуют органические вещества, а не получают их из почвы. Взвешивая горшок с землей, в котором росла ива, и само дерево, он показал, что в течение 5 лет масса дерева увеличилась на 74 кг, тогда как почва потеряла только 57 г. Ван Гельмонт пришел к заключению, что остальную часть пищи растение получило из воды, которой поливали дерево. Теперь мы знаем, что основным материалом для синтеза служит двуокись углерода, извлекаемая растением из воздуха.

В 1772 году Джозеф Пристли показал, что побег мяты "исправляет" воздух, "испорченный" горящей свечой. Семь лет спустя Ян Ингенхуз обнаружил, что растения могут "исправлять" плохой воздух только находясь на свету, причем способность растений "исправлять" воздух пропорциональна ясности дня и длительности пребывания растений на солнце. В темноте же растения выделяют воздух, "вредный для животных".

Следующей важной ступенью в развитии знаний о фотосинтезе были опыты Соссюра, проведенные в 1804 году. Взвешивая воздух и растения до фотосинтеза и после, Соссюр установил, что увеличение сухой массы растения превышало массу поглощенной им из воздуха углекислоты. Соссюр пришел к выводу, что другим веществом, участвовавшим в увеличении массы, была вода. Таким образом, 160 лет назад процесс фотосинтеза представляли себе следующим образом:

H 2 O + CO 2 + hv -> C 6 H 12 O 6 + O 2

Вода + Углекислота + Солнечная энергия ----> Органическое вещество + Кислород

Ингенхуз предположил, что роль света в фотосинтезе заключается в расщеплении углекислоты; при этом происходит выделение кислорода, а освободившийся "углерод" используется для построения растительных тканей. На этом основании живые организмы были разделены на зеленые растения, которые могут использовать солнечную энергию для "ассимиляции" углекислоты, и остальные организмы, не содержащие хлорофилла, которые не могут использовать энергию света и не способны ассимилировать CO 2 .

Этот принцип разделения живого мира был нарушен, когда С. Н. Виноградский в 1887 году открыл хемосинтезирующие бактерии - бесхлорофильные организмы, способные ассимилировать (т. е. превращать в органические соединения) углекислоту в темноте. Он был нарушен также, когда в 1883 году Энгельман открыл пурпурные бактерии, осуществляющие своеобразный фотосинтез, не сопровождающийся выделением кислорода. В свое время этот факт не был оценен в должной мере; между тем открытие хемосинтезирующих бактерий, ассимилирующих углекислоту в темноте, показывает, что ассимиляцию углекислоты нельзя считать специфической особенностью одного лишь фотосинтеза.

После 1940 года благодаря применению меченого углерода было установлено, что все клетки - растительные, бактериальные и животные - способны ассимилировать углекислоту, т. е. включать ее в состав молекул органических веществ; различны лишь источники, из которых они черпают необходимую для этого энергию.

Другой крупный вклад в изучение процесса фотосинтеза внес в 1905 году Блэкман, который обнаружил, что фотосинтез состоит из двух последовательных реакций: быстрой световой реакции и ряда более медленных, не зависящих от света этапов, названных им темповой реакцией. Используя свет высокой интенсивности, Блэкман показал, что фотосинтез протекает с одинаковой скоростью как при прерывистом освещении с продолжительностью вспышек всего в долю секунды, так и при непрерывном освещении, несмотря на то что в первом случае фотосинтетическая система получает вдвое меньше энергии. Интенсивность фотосинтеза снижалась только при значительном увеличении темнового периода. В дальнейших исследованиях было установлено, что скорость темновой реакции значительно возрастает с повышением температуры.

Следующая гипотеза относительно химической основы фотосинтеза была выдвинута ван Нилем, который в 1931 году экспериментально показал, что у бактерий фотосинтез может происходить в анаэробных условиях, не сопровождаясь выделением кислорода. Ван Ниль высказал предположение, что в принципе процесс фотосинтеза сходен у бактерий и у зеленых растений. У последних световая энергия используется для фотолиза воды (Н 2 0) с образованием восстановителя (Н), определенным путем участвующего в ассимиляции углекислоты, и окислителя (ОН) - гипотетического предшественника молекулярного кислорода. У бактерий фотосинтез протекает в общем так же, но донором водорода служит Н 2 S или молекулярный водород, и поэтому выделения кислорода не происходит.

Современные представления о фотосинтезе

По современным представлениям сущность фотосинтеза заключается в превращении лучистой энергии солнечного света в химическую энергию в форме АТФ и восстановленного никотинамидадениндинуклеотидфосфата (НАДФ · Н).

В настоящее время принято считать, что процесс фотосинтеза складывается из двух стадий, в которых активное участие принимают фотосинтезирующие структуры [показать] и светочувствительные пигменты клетки .

Фотосинтезирующие структуры

У бактерий фотосинтезирующие структуры представлены в виде впячивания клеточной мембраны, образуя пластинчатые органоиды мезосомы. Изолированные мезосомы, получаемые при разрушении бактерий, называются хроматофорами, в них сосредоточен светочувствительный аппарат.

У эукариотов фотосинтетический аппарат расположен в специальных внутриклеточных органоидах - хлоропластах, содержащих зеленый пигмент хлорофилл, который придает растению зеленую окраску и играет важнейшую роль в фотосинтезе, улавливая энергию солнечного света. Хлоропласты, подобно митохондриям, содержат также ДНК, РНК и аппарат для синтеза белка, т. е. обладают потенциальной способностью к самовоспроизведению. По размерам хлоропласты в несколько раз больше митохондрий. Число хлоропластов колеблется от одного у водорослей до 40 на клетку у высших растений.


В клетках зеленых растений помимо хлоропластов имеются и митохондрии, которые используются для образования энергии в ночное время за счет дыхания, как в гетеротрофных клетках.

Хлоропласты имеют шаровидную или уплощенную форму. Они окружены двумя мембранами - наружной и внутренней (рис. 1). Внутренняя мембрана укладывается в виде стопок уплощенных пузырьковидных дисков. Эта стопка называется граной.

Каждая грана состоит из отдельных слоев, расположенных наподобие столбиков монет. Слои белковых молекул чередуются со слоями, содержащими хлорофилл, каротины и другие пигменты, а также особые формы липидов (содержащих галактозу или серу, но только одну жирную кислоту). Эти поверхностно-активные липиды, по-видимому, адсорбированы между отдельными слоями молекул и служат для стабилизации структуры, состоящей из чередующихся слоев белка и пигментов. Такое слоистое (ламеллярное) строение граны, вероятнее всего облегчает перенос энергии в процессе фотосинтеза от одной молекулы к близлежащей.

В водорослях находится не более одной граны в каждом хлоропласте, а в высших растениях - до 50 гран, которые соединены между собой мембранными перемычками. Водная среда между гранами - это строма хлоропласта, которая содержит ферменты, осуществляющие "темновые реакции"

Пузырьковидные структуры, из которых состоит грана, называются тилактоидами. В гране от 10 до 20 тилактоидов.

Элементарная структурная и функциональная единица фотосинтеза мембран тилактоидов, содержащая необходимые светоулавливающие пигменты и и компоненты аппарата трансформации энергии, называется квантосомой, состоящей примерно из 230 молекул хлорофилла. Эта частица имеет массу порядка 2 х 10 6 дальтон и размеры около 17,5 нм.

Стадии фотосинтеза

Световая стадия (или энергетическая)

Темновая стадия (или метаболическая)

Место протекание реакции

В квантосомах мембран тилактоидов, протекает на свету.

Осуществляется вне тилактоидов, в водной среде стромы.

Начальные продукты

Энергия света, вода (Н 2 О), АДФ, хлорофилл

СО 2 , рибулозодифосфат, АТФ, НАДФН 2

Суть процесса

Фотолиз воды, фосфорилирование

В световой стадии фотосинтеза энергия света трансформируется в химическую энергию АТФ, а бедные энергией электроны воды переходят в богатые энергией электроны НАДФ· Н 2 . Побочным веществом, образующимся в ходе световой стадии, является кислород. Реакции световой стадии получили название "световых реакций".

Карбоксилирование, гидрирование, дефосфорилирование

В темновой стадии фотосинтеза протекают "темновые реакции" при которых наблюдается восстановительный синтез глюкозы из CO 2 . Без энергии световой стадии темновая стадия невозможна.

Конечные продукты

О 2 , АТФ, НАДФН 2

Богатые энергией продукты световой реакции - АТФ и НАДФ· Н 2 далее используются в темновой стадии фотосинтеза.

Взаимосвязь между световой и темновой стадиями можно выразить схемой

Процесс фотосинтеза эндергонический, т.е. сопровождается увеличением свободной энергии, поэтому требует значительного количества энергии, подведенной извне. Суммарное уравнение фотосинтеза:

6СО 2 + 12Н 2 О--->С 6 Н 12 О 62 + 6Н 2 О + 6О 2 + 2861 кДж/моль.

Наземные растения поглощают необходимую для процесса фотосинтеза воду через корни, а водные растения получают ее путем диффузии из окружающей среды. Необходимая для фотосинтеза углекислота диффундирует в растение через мелкие отверстия на поверхности листьев - устьица. Поскольку углекислота расходуется в процессе фотосинтеза, ее концентрация в клетке обычно несколько ниже, чем в атмосфере. Освобождающийся в процессе фотосинтеза кислород диффундирует наружу из клетки, а затем и из растения - через устьица. Образующиеся при фотосинтезе сахара также диффундируют в те части растения, где их концентрация ниже.

Для осуществления фотосинтеза растениям необходимо очень много воздуха, так как он содержит всего 0,03% углекислоты. Следовательно, из 10 000 м 3 воздуха можно получить 3 м 3 углекислоты, из которой в процессе фотосинтеза образуется около 110 г глюкозы. Обычно растения лучше растут при более высоком содержании в воздухе углекислоты. Поэтому в некоторых теплицах содержание CO 2 в воздухе доводят до 1-5%.

Механизм световой (фотохимической) стадии фотосинтеза

В реализации фотохимической функции фотосинтеза принимают участие солнечная энергия и различные пигменты: зеленые - хлорофиллы а и b, желтые - каротиноиды и красные или синие - фикобилины. Фотохимически активен среди этого комплекса пигментов только хлорофилл а. Остальные пигменты играют вспомогательную роль, являясь лишь собирателями световых квантов (своеобразные светособирающие линзы) и проводниками их к фотохимическому центру.

На основании способности хлорофилла эффективно поглощать солнечную энергию определенной длины волны в мембранах тилактоидов были выделены функциональные фотохимические центры или фотосистемы (рис. 3):

  • фотосистемa I (хлорофилл а ) - содержит пигмент 700 (Р 700) поглощающий свет с длиной волны около 700 нм, играет основную роль в образовании продуктов световой стадии фотосинтеза: АТФ и НАДФ · Н 2
  • фотосистема II (хлорофилл b ) - содержит пигмент 680 (Р 680), поглощающий свет с длиной волны 680 нм, играет вспомогательную роль восполняя за счет фотолиза воды утраченные фотосистемой I электроны

На 300-400 молекул светособирающих пигментов в фотосистемах I и II приходится только одна молекула фотохимически активного пигмента - хлорофилла а.

Поглощенный растением световой квант

  • переводит пигмент Р 700 из основного состояния в возбужденное - Р * 700 , в котором он легко теряет электрон с образованием положительной электронной дырки в виде Р 700 + по схеме:

    Р 700 ---> Р * 700 ---> Р + 700 + е -

    После чего молекула пигмента, потерявшая электрон, может служить акцептором электрона (способна принять электрон) и переходить в восстановленную форму

  • вызывает разложение (фотоокисление) воды в фотохимическом центре Р 680 фотосистемы II по схеме

    Н 2 О ---> 2Н + + 2е - + 1/2O 2

    Фотолиз воды называется реакцией Хилла. Электроны, образующиеся при разложении воды, первоначально акцептируются веществом, обозначаемым Q (иногда его называют цитохромом С 550 пo максимуму поглощения, хотя оно не является цитохромом). Затем от вещества Q через цепь переносчиков, похожую по составу на митохондриальную, электроны поставляются в фотосистему I для заполнения электронной дырки, образовавшейся в результате поглощения системой световых квантов, и восстановления пигмента Р + 700

Если такая молекула просто получит назад тот же электрон, то произойдет выделение световой энергии в виде тепла и флуоресценции (этим обусловлена флуоресценция чистого хлорофилла). Однако, в большинстве случаев, освободившийся отрицательно заряженный электрон акцептируется специальными железосерными белками (FеS-центр), а затем

  1. или транспортируется по одной из цепей переносчиков обратно к Р + 700 , заполняя электронную дырку
  2. или по другой цепи переносчиков через ферредоксин и флавопротеид к постоянному акцептору - НАДФ · Н 2

В первом случае происходит замкнутый циклический транспорт электрона, а во втором - нециклический.

Оба процесса катализируются одной и той же цепью переносчиков электронов. Однако при циклическом фотофосфорилировании электроны возвращаются от хлорофилла а снова к хлорофиллу а , тогда как при нециклическом фотофосфорилировании электроны переходят от хлорофилла b к хлорофиллу а .

Циклическое (фотосинтетическое) фосфорилирование Нециклическое фосфорилирование

В результате циклического фосфорилирования происходит образование молекул АТФ. Процесс связан с возвращением через ряд последовательных этапов возбужденных электронов на Р 700 . Возвращение возбужденных электронов на Р 700 приводит к высвобождению энергии (при переходе с высокого на низкий энергетический уровень), которая, при участии фосфорилирующей ферментной системы, аккумулируется в фосфатных связях АТФ, а не рассеивается в виде флуоресценции и тепла (рис.4.). Этот процесс называется фотосинтетическим фосфорилированием (в отличие от окислительного фосфорилирования, осуществляемого митохондриями);

Фотосинтетическое фосфорилирование - первичная реакция фотосинтеза - механизм образования химической энергии (синтеза АТФ из АДФ и неорганического фосфата) на мембране тилактоидов хлоропластов с использованием энергии солнечного света. Необходима для темновой реакции ассимиляции СО 2

В результате нециклического фосфорилирования происходит восстановление НАДФ + с образование НАДФ · Н. Процесс связан с передачей электрона ферредоксину, его восстановлением и дальнейшим переходом его к НАДФ + с последующим восстановление его до НАДФ · Н

В тилактоидах идут оба процесса, хотя второй более сложный. Он сопряжен (взаимосвязан) с работой фотосистемы II.

Таким образом, утраченные Р 700 электроны восполняются за счет электронов воды, разлагаемой под действием света в фотосистеме II.

а + в основное состояние, образуются, по-видимому, при возбуждении хлорофилла b . Эти высокоэнергетические электроны переходят к ферредоксину и затем через флавопротеин и цитохромы - к хлорофиллу а . На последнем этапе происходит фосфорилирование АДФ до АТФ (рис. 5).

Электроны, необходимые для возвращения хлорофилла в его основное состояние, поставляются, вероятно, ионами ОН - , образующимися при диссоциации воды. Некоторая часть молекул воды диссоциирует на ионы Н + и ОН - . В результате потери электронов ионы ОН - превращаются в радикалы (ОН), которые в дальнейшем дают молекулы воды и газообразного кислорода (рис. 6).

Этот аспект теории подтверждается результатами опытов с водой и CO 2 , меченными 18 0 [показать] .

Согласно этим результатам, весь газообразный кислород, выделяющийся при фотосинтезе, происходит из воды, а не из СО 2 . Реакции расщепления воды до сих пор еще подробно не изучены. Ясно, однако, что осуществление всех последовательных реакций нециклического фотофосфорилирования (рис. 5), в том числе возбуждение одной молекулы хлорофилла а и одной молекулы хлорофилла b , должно приводить к образованию одной молекулы НАДФ · Н, двух или более молекул АТФ из АДФ и Ф н и к выделению одного атома кислорода. Для этого необходимо по крайней мере четыре кванта света - по два для каждой молекулы хлорофилла.

Нециклический поток электронов от Н 2 О к НАДФ · Н 2 , происходящий при взаимодействии двух фотосистем и связывающих их электронно-транспортных цепей, наблюдается вопреки значениям редокс-потенциалов: Е° для 1/2O 2 /Н 2 О = +0,81 В, а Е° для НАДФ/НАДФ · Н = -0,32 В. Энергия света обращает поток электронов "вспять". Существенно то, что при переносе от фотосистемы II к фотосистеме I часть энергии электронов аккумулируется в виде протонного потенциала на мембране тилактоидов, а затем в энергию АТФ.

Механизм образования протонного потенциала в цепи переноса электронов и его использование на образование АТФ в хлоропластах сходен с таковым в митохондриях. Однако в механизме фотофосфорилирования имеются некоторые особенности. Тилактоиды представляют собой как бы вывернутые наизнанку митохондрии, поэтому направление переноса электронов и протонов через мембрану противоположно направлению его в митохондриальной мембране (рис.6). Электроны движутся к внешней стороне, а протоны концентрируются внутри тилактоидного матрикса. Матрикс заряжается положительно, а внешняя мембрана тилактоида - отрицательно, т. е. направление протонного градиента противоположно направлению его в митохондриях.

Другой особенностью является значительно большая доля рН в протонном потенциале по сравнению с митохондриями. Тилактоидный матрикс сильно закисляется, поэтому Δ рН может достигать 0,1-0,2 В, в то время как Δ Ψ составляет около 0,1 В. Общее значение Δ μ H+ > 0,25 В.

Н + -АТФ-синтетаза, обозначаемая в хлоропластах как комплекс "СF 1 +F 0 ", ориентирована тоже в противоположном направлении. Головка ее (F 1) смотрит наружу, в сторону стромы хлоропласта. Протоны выталкиваются через СF 0 +F 1 из матрикса наружу, и в активном центре F 1 образуется АТФ за счет энергии протонного потенциала.

В отличие от митохондриальной цепи в тилактоидной имеется, по-видимому, только два участка сопряжения, поэтому на синтез одной молекулы АТФ требуется вместо двух три протона, т. е. соотношение 3 Н + /1 моль АТФ.

Итак, на первой стадии фотосинтеза, во время световых реакций, в строме хлоропласта образуются АТФ и НАДФ · Н - продукты, необходимые для осуществления темновых реакций.

Механизм темновой стадии фотосинтеза

Темновые реакции фотосинтеза - это процесс включения углекислоты в органические вещества с образованием углеводов (фотосинтез глюкозы из СО 2). Реакции протекают в строме хлоропласта при участии продуктов световой стадии фотосинтеза - АТФ и НАДФ · Н2.

Ассимиляция диоксида углерода (фотохимическое карбоксилирование) представляет собой циклический процесс, который называется также пентозофосфатным фотосинтетическим циклом или циклом Кальвина (рис. 7). В нем можно выделить три основные фазы:

  • карбоксилирование (фиксация СО 2 рибулозодифосфатом)
  • восстановление (образование триозофосфатов при восстановлении 3-фосфоглицерата)
  • регенерация рибулозодифосфата

Рибулозо-5-фосфат (сахар, содержащий 5 атомов углерода, с фосфатным остатком у углерода в положении 5) подвергается фосфорилированию за счет АТФ, что приводит к образованию рибулозодифосфата. Это последнее вещество карбоксилируется путем присоединения СО 2 , по-видимому, до промежуточного шестиуглеродного продукта, который, однако, немедленно расщепляется с присоединением молекулы воды, образуя две молекулы фосфоглицериновой кислоты. Затем фосфоглицериновая кислота восстанавливается в ходе ферментативной реакции, для осуществления которой необходимо присутствие АТФ и НАДФ · Н с образованием фосфоглицеринового альдегида (трехуглеродный сахар - триоза). В результате конденсации двух таких триоз образуется молекула гексозы, которая может включаться в молекулу крахмала и таким образом откладываться про запас.

Для завершения этой фазы цикла в процессе фотосинтеза поглощается 1 молекула С0 2 и используются 3 молекулы АТФ и 4 атома Н (присоединенных к 2 молекулам НАД · Н). Из гексозофосфата путем определенных реакций пентозофосфатного цикла (рис. 8) регенерирует рибулозофосфат, который снова может присоединить к себе другую молекулу углекислоты.

Ни одну из описанных реакций - карбоксилирование, восстановление или регенерацию - нельзя считать специфичной только для фотосинтезирующей клетки. Единственное обнаруженное у них отличие заключается в том, что для реакции восстановления, в течение которой фосфоглицериновая кислота превращается в фосфоглицериновый альдегид, необходим НАДФ · Н, а не НАД · Н, как обычно.

Фиксация СО 2 рибулозодифосфатом катализируется ферментом рибулозодифосфаткарбоксилазой: Рибулозодифосфат + СО 2 --> 3-Фосфоглицерат Далее 3-фосфоглицерат восстанавливается с помощью НАДФ · Н 2 и АТФ до глицеральдегид-3-фосфата. Эта реакция катализируется ферментом - глицеральдегид-3-фосфат-дегидрогеназой. Глицеральдегид-3-фосфат легко изомеризуется в дигидроксиацетонфосфат. Оба триозофосфата используются в образовании фруктозобисфосфата (обратная реакция, катализируемая фруктозо-бисфосфат-альдолазой). Часть молекул образовавшегося фруктозобисфосфата участвует вместе с триозофосфатами в регенерации рибулозодифосфата (замыкают цикл), а другая часть используется для запасания углеводов в фотосинтезирующих клетках, как показано на схеме.

Подсчитано, что для синтеза одной молекулы глюкозы из СО 2 в цикле Кальвина требуется 12 НАДФ · Н + Н + и 18 АТФ (12 молекул АТФ расходуются на восстановление 3-фосфоглицерата, а 6 молекул - в реакциях регенерации рибулозодифосфата). Минимальное соотношение - 3 АТФ: 2 НАДФ · Н 2 .

Можно заметить общность принципов, лежащих в основе фотосинтетического и окислительного фосфорилирования, причем фотофосфорилирование представляет собой как бы обращенное окислительное фосфорилирование:

Энергия света является движущей силой фосфорилирования и синтеза органических веществ (S-Н 2) при фотосинтезе и, наоборот, энергия окисления органических веществ - при окислительном фосфорилировании. Поэтому именно растения обеспечивают жизнь животным и другим гетеротрофным организмам:

Углеводы, образующиеся при фотосинтезе, служат для построения углеродных скелетов многочисленных органических веществ растений. Азоторганические вещества усваиваются фотосинтезирующими организмами путем восстановления неорганических нитратов или атмосферного азота, а сера - восстановлением сульфатов до сульфгидрильных групп аминокислот. Фотосинтез в конечном итоге обеспечивает построение не только обязательных для жизни белков, нуклеиновых кислот, углеводов, липидов, кофакторов, но и многочисленных продуктов вторичного синтеза, являющихся ценными лекарственными веществами (алкалоиды, флавоноиды, полифенолы, терпены, стероиды, органические кислоты и т.д.).

Бесхлорофильный фотосинтез

Бесхлорофильный фотосинтез обнаружен у солелюбивых бактерий, имеющих фиолетовый светочувствительный пигмент. Этим пигментом оказался белок бактериородопсин, содержащий, подобно зрительному пурпуру сетчатки - родопсину, производное витамина А - ретиналь. Бактериородопсин, встроенный в мембрану солелюбивных бактерий, образует на этой мембране в ответ на поглощение ретиналем света протонный потенциал, преобразующийся в АТФ. Таким образом, бактериородопсин является бесхлорофильным преобразователем энергии света.

Фотосинтез и внешняя среда

Фотосинтез возможен только при наличии света, воды и диоксида углерода. КПД фотосинтеза не более 20% у культурных видов растений, а обычно он не превышает 6-7%. В атмосфере примерно 0,03% (об.) СО 2 , при повышении его содержания до 0,1% интенсивность фотосинтеза и продуктивность растений возрастают, поэтому целесообразно подкармливать растения гидрокарбонатами. Однако содержание СО 2 в воздухе выше 1,0% оказывает вредное действие на фотосинтез. За год только наземные растения усваивают 3% всего СО 2 атмосферы Земли, т. е. около 20 млрд. т. В составе синтезируемых из СО 2 углеводов аккумулируется до 4 · 10 18 кДж энергии света. Это соответствует мощности электростанции в 40 млрд кВт. Побочный продукт фотосинтеза - кислород - жизненно необходим для высших организмов и аэробных микроорганизмов. Сохранить растительный покров - значит сохранить жизнь на Земле.

Эффективность фотосинтеза

Эффективность фотосинтеза с точки зрения производства биомассы можно оценить через долю общей солнечной радиации, попадающей на определенную площадь за определенное время, которая запасается в органических веществах урожая. Продуктивность системы можно оценить по количеству органического сухого вещества, получаемого с единицы площади за год, и выразить в единицах массы (кг) или энергии (мДж) продукции, полученной с гектара за год.

Выход биомассы зависит, таким образом, от площади коллектора солнечной энергии (листьев), функционирующих в течение года, и числа дней в году с такими условиями освещенности, когда возможен фотосинтез с максимальной скоростью, что определяет эффективность всего процесса. Результаты определения доли солнечной радиации (в %), доступной растениям (фотосинтетически активной радиации, ФАР), и знание основных фотохимических и биохимических процессов и их термодинамической, эффективности позволяют рассчитать вероятные предельные скорости образования органических веществ в пересчете на углеводы.

Растения используют свет с длиной волны от 400 до 700 нм, т. е. на долю фотосинтетически активной радиации приходится 50% всего солнечного света. Это соответствует интенсивности на поверхности Земли 800-1000 Вт/м 2 за обычный солнечный день (в среднем). Усредненная максимальная эффективность превращения энергии при фотосинтезе на практике составляет 5-6%. Эти оценки получены на основе изучения процесса связывания СО 2 , а также сопутствующих физиологических и физических потерь. Одному молю связанного СО 2 в форме углевода соответствует энергия 0,47 МДж, а энергия моля квантов красного света с длиной волны 680 нм (наиболее бедный энергией свет, используемый в фотосинтезе) составляет 0,176 МДж. Таким образом, минимальное число молей квантов красного света, необходимое для связывания 1 моля СО 2 , составляет 0,47:0,176 = 2,7. Однако, поскольку перенос четырех электронов от воды для фиксации одной молекулы СО 2 требует не менее восьми квантов света, теоретическая эффективность связывания равна 2,7:8 = 33%. Эти расчеты сделаны для красного света; ясно, что для белого света эта величина будет соответственно ниже.

В наилучших полевых условиях эффективность фиксации в растениях достигает 3%, однако это возможно лишь в короткие периоды роста и, если пересчитать ее на весь год, то она будет где-то между 1 и 3%.

На практике в среднем за год эффективность фотосинтетического преобразования энергии в зонах с умеренным климатом составляет обычно 0,5-1,3%, а для субтропических культур - 0,5-2,5%. Выход продукта, который можно ожидать при определенном уровне интенсивности солнечного света и разной эффективности фотосинтеза, легко оценить из графиков, приведенных на рис. 9.

Значение фотосинтеза

  • Процесс фотосинтеза является основой питания всех живых существ, а также снабжает человечество топливом, волокнами и бесчисленными полезными химическими соединениями.
  • Из диоксида углерода и воды, связанных из воздуха в ходе фотосинтеза, образуется около 90-95% сухого веса урожая.
  • Человек использует около 7% продуктов фотосинтеза в пищу, в качестве корма для животных, в виде топлива и строительных материалов

Фотосинтетическое фосфорилирование было обнаружено Д. Арноном с сотрудниками и другими исследователями в опытах с изолированными хлоропластами высших растений и с бесклеточными препаратами из различных фотосинтезирующих бактерий и водорослей. При фотосинтезе происходят два типа фотоосинтетического фосфорилирования: циклическое и нециклическое. При обоих видах фотофосфорилирования синтез АТР из ADP и неорганического фосфата происходит на этапе передачи электронов от цитохрома b6 к цитохрому f.

Синтез АТР осуществляется при участии АТР-азного комплекса, «вмонтированного» в белково-липидную мембрану тилакоида с eе внешней стороны. Согласно теории Митчелла, так же, как и в случае окислительного фосфорилирования в митохондрии, находящаяся в мембране тилакоида цепь переноса электронов функционирует как «протонный насос», создавая градиент концентрации протонов. Однако в данном случае происходящий при поглощении света перенос электронов вызывает их перемещение снаружи во внутрь тилакоида и возникающий трансмембранный потенциал (между внутренней и внешней поверхностью мембраны) обратен тому, который образуется в мембране митохондрии. Электростатическая энергия и энергия градиента протонов используется для синтеза АТР ATP-синтетазой.

При нециклическом фотофосфорилировании электроны, поступившие от воды и соединения Z к фотосистеме 2, а затем к фотосистеме 1, направляются к промежуточному соединению Х, а затем используются на восстановление NADP+ до NADPH; их путь здесь заканчивается. При циклическом фотофосфорилировании электроны, поступившие от фотосистемы 1 к соединению Х, направляются снова к цитохрому b6 и от него далее к цитохрому У, участвуя на этом последнем этапе своего пути в синтезе АТР из ADP и неорганического фосфата. Таким образом, при нециклическом фотофосфорилировании перемещение электронов сопровождается синтезом АТР и NADPH. При циклическом фотофосфорилировании происходит только синтез АТР, а NADPH не образуется. АТР, образовавшийся в процессе фотофосфорилирования и дыхания, используется не только при восстановлении фосфоглицериновой кислоты до углевода, но и в других синтетических реакциях - при синтезе крахмала, белков, липидов, нуклеиновых кислот и пигментов. Он также служит источником энергии для процессов движения, транспорта метаболитов, поддержания ионного баланса и т.д.

Роль пластохинонов в фотосинтезе

В хлоропластах открыты пять форм пластохинонов, обозначаемых буквами А, В, С, D и Е, являющихся производными бензохинона. Так, например, пластохинон А представляет собой 2,З-диметил-5-соланезилбензохинон. Пластохиноны весьма близки по строению к убихинонам (коэнзимам Q), играющим важную роль в процессе переноса электронов при дыхании. Важная роль пластохинонов в процессе фотосинтеза следует из того факта, что если их экстрагировать из хлоропластов петролейным эфиром, то фотолиз воды и фотофосфорилирование прекращаются, но возобновляются после добавки пластохинонов. Каковы детали функциональной взаимосвязи различных пигментов и переносчиков электронов, участвующих в процессе фотосинтеза, - цитохромов, ферредоксина, пластоцианина и пластохинонов, - должны показать дальнейшие исследования. Во всяком случае, каковы бы ни были детали этого процесса, в настоящее время очевидно, что световая фаза фотосинтеза приводит к образованию трех специфических продуктов: NADPH, АТР и молекулярного кислорода.

Какие соединения образуются в результате третьего, темнового этапа фотосинтеза?

Существенные результаты, проливающие свет на природу первичных продуктов, образующихся при фотосинтезе, получены с помощью изотопной методики. В этих исследованиях растения ячменя, а также одноклеточные зеленые водоросли Chlorella и Scenedesmus получали в качестве источника углерода углекислый газ, содержавший меченый радиоактивный углерод 14C. После чрезвычайно кратковременного облучения подопытных растений, исключавшего возможность вторичных реакций, исследовалось распределение изотопного углерода в различных продуктах фотосинтеза. Было установлено, что первый продукт фотосинтеза - фосфоглицериновая кислота; вместе с тем при весьма кратковременном облучении растений наряду с фосфоглицериновой кислотой образуется незначительное количество фосфоенолпировиноградной и яблочной кислот. Например, в опытах с одноклеточной зеленой водорослью Sceriedesmus после фотосинтеза, продолжавшегося пять секунд, 87% изотопного углерода было обнаружено в составе фосфоглицериновой кислоты, 10% - в фосфоенолпировиноградной кислоте и 3% -- в яблочной кислоте. По-видимому, фосфоенолпировиноградная кислота является продуктом вторичного превращения фосфоглицериновой кислоты. При более длительном фотосинтезе, продолжающемся 15-60 секунд, радиоактивный углерод 14C обнаруживается также в гликолевой кислоте, триозофосфатах, сахарозе, аспарагиновой кислоте, аланине, серине, гликоколе, а также в белках. Позже всего меченый углерод обнаруживается в глюкозе, фруктозе, янтарной, фумаровой и лимонной кислотах, а также в некоторых аминокислотах и амидах (треонин, фенилаланин, тирозин, глютамин, аспарагин). Таким образом, опыты с усвоением растениями углекислого газа, содержащего меченый углерод, показали, что первым продуктом фотосинтеза является фосфоглицериновая кислота.

К какому веществу присоединяется углекислый газ в процессе фотосинтеза?

Работы М. Кальвина, проведенные с помощью радиоактивного углерода 14С, показали, что у большинства растений соединением, к которому присоединяется СО2, является рибулозодифосфат. Присоединяя СО2, он дает две молекулы фосфоглицериновой кислоты. Последняя фосфоорилируется при участии АТР с образованием дифосфоглицериновой кислоты, которая при участии NADPH восстанавливается и образует фосфоглицериновый альдегид, частично превращающийся в фосфодиоксиацетон. Благодаря синтетическому действию фермента альдолазы, фосфоглицериновый альдегид и фосфодиоксиацетон, соединяясь, образуют молекулу фруктозодифосфата, из которого далее синтезируются сахароза и различные полисахариды. Рибулозодифосфат - акцептор СО2, образуется в результате ряда ферментативных превращений фосфоглицеринового альдегида, фосфодиоксиацетона и фруктозодифосфата. В качестве промежуточных продуктов при этом возникают эритрозофосфат, седогептулозофосфат, ксилулозофосфат, рибозофосфат и рибулозофосфат. Ферментные системы, катализирующие все эти превращения, найдены в клетках хлореллы, в листьях шпината и в других растениях. Согласно М. Кальвину, процесс образования фосфоглицериновой кислоты из рибулозодифосфата и СО2 носит циклический характер. Ассимиляция углекислого газа с образованием фосфоглицериновой кислоты происходит без участия света и хлорофилла и является темновым процессом. Водород воды в конечном счете используется на восстановление фосфоглицериновой кислоты до фосфоглицеринового альдегида. Этот процесс катализируется ферментом дегидрогеназой фосфоглицеринового альдегида и в качестве источника водорода требует участия NADPH. Так как этот процесс в темноте немедленно прекращается, очевидно, что восстановление NADP осуществляется водородом, образующимся при фотолизе воды.

Уравнение Кальвина для фотосинтеза

Суммарное уравнение цикла Кальвина имеет следующий вид:

6СО2 + 12NADPH + 12Н+ + 18АТР + 11Н2О = фруктозо-б-фосфат + 12NADP+ + 18ADP + 17Р неорг

Таким образом, для синтеза одной молекулы гексозы требуется шесть молекул СО2. Для превращения одной молекулы СО2 нужно две молекулы NADPH и три молекулы АТР (1: 1,5). Так как при нециклическом фотофосфорилировании отношение образующихся NADPH:АТР составляет 1:1, добавочное необходимое количество АТР синтезируется в процессе циклического фотофосфорилирования.

Путь углерода при фотосинтезе изучался Кальвином при сравнительно высоких концентрациях СО2. При более низких концентрациях, приближающихся к атмосферным (0,03%), в хлоропласте под действием рибулозодифосфаткарбоксилазы образуется значительное количество фосфогликолевой кислоты. Последняя в процессе транспорта через мембрану хлоропласта гидролизуется специфической фосфатазой, и образовавшаяся гликолевая кислота перемещается из хлоропласта в связанные с ним субклеточные структуры - пероксисомы, где под действием фермента гликолатоксидазы окисляется до глиоксилевой кислоты HOC-COOH. Последняя путем переаминирования образует глицин, который, перемещаясь в митохондрию, превращается здесь в серин.

Это превращение сопровождается образованием СО2 и NН3: 2 глицин + Н2О = серин + СО2 + NН3 +2Н+ +2е-.

Однако аммиак не выделяется во внешнюю среду, а связывается в виде глютамина. Таким образом, пероксисомы и митохондрии принимают участие в процессе так называемого фотодыхания - стимулируемого светом процесса поглощения кислорода и выделения СО2. Этот процесс связан с превращениями гликолевой кислоты и ее окислением до СО2. В результате интенсивного фотодыхания может значительно (до 30%) снижаться продуктивность растений.

Другие возможности усвоения СО2 в процессе фотосинтеза

Усвоение СО2 в процессе фотосинтеза происходит не только путем карбоксилирования рибулозодифосфата, но и путем карбоксилирования других соединений. Например, показано, что у сахарного тростника, кукурузы, сорго, проса и ряда других растений особенно важную роль в процессе фотосинтетической фиксации играет фермент фосфоенолпируват-карбоксилаза, синтезирующая из фосфоенолпирувата, СО2 и воды щавелевоуксусную кислоту. Растения, у которых первым продуктом фиксации СО2 является фосфоглицериновая кислота, принято называть С3-растениями, а те, у которых синтезируется щавелевоуксусная кислота, -C4-растениями. Упоминавшийся выше процесс фотодыхания характерен для С3-растений и является следствием ингибирующего действия кислорода на рибулозодифосфат-карбоксилазу.

Фотосинтез у бактерий

У фотосинтезирующих бактерий фиксация СО2 происходит при участии ферредоксина. Так, из фотосинтезирующей бактерии Chromatium выделена и частично очищена ферментная система, которая при участии ферредоксина катализирует восстановительный синтез пировиноградной кислоты из СО2 и ацетилкоэнзима А:

Ацетил-СоА + С02 + ферредоксин восстановл. = пируват + ферредоксин окислен. + СоА

Аналогичным образом при участии ферредоксина в бесклеточных ферментных препаратах, выделенных из фотосинтезирующей бактерии Chlorobium thiosulfatophilum , происходит синтез а-кетоглютаровой кислоты путем карбоксилирования янтарной кислоты:

Сукцинил-СоА + СО2 + ферредоксин восстановл. = a-кетоглютарат + СоА + ферредоксин окислен.

У некоторых микроорганизмов, содержащих бактериохлорофилл, так называемых пурпурных серобактерий, на свету также происходит процесс фотосинтеза. Однако в отличие от фотосинтеза высших растений в данном случае восстановление углекислого газа осуществляется сероводородом. Суммарное уравнение фотосинтеза у пурпурных бактерий можно представить следующим образом:

Свет, бактериохлорофилл: CO2 + 2H2S = CH2O + H2O + 2S

Таким образом, и в данном случае фотосинтез представляет собой сопряженный окислительно-восстановительный процесс, идущий под влиянием поглощенной бактериохлорофиллом световой энергии. Из приведенного уравнения видно, что в результате фотосинтеза пурпурные бактерии выделяют свободную серу, которая накапливается в них в виде гранул.

Исследования, проведенные при помощи изотопной методики с анаэробной фотосинтезирующей пурпурной бактерией Chromatium, показали, что при очень коротких сроках фотосинтеза (30 секунд) около 45% углерода СО2 включается в аспарагиновую кислоту, а около 28% - в фосфоглицериновую кислоту. По-видимому, образование фосфоглицериновой кислоты предшествует образованию аспарагиновой кислоты, а наиболее ранним продуктом фотосинтеза у Chromatium, так же как у высших растений и одноклеточных зеленых водорослей, является рибулозодифосфат. Последний под действием рибулозодифосфаткарбоксилазы присоединяет СО2 с образованием фосфоглицериновой кислоты. Эта кислота у Chromatium в соответствии со схемой Кальвина может частично превращаться в фосфорилированные сахара, а в основном превращается в аспарагиновую кислоту. Образование аспарагиновой кислоты происходит путем превращения фосфоглицериновой кислоты в фосфоенолпировиноградную кислоту, которая, подвергаясь карбоксилированию, дает щавелевоуксусную кислоту; последняя путем переаминирования дает аспарагиновую кислоту.

Фотосинтез - источник органических веществ на Земле

Процесс фотосинтеза, происходящий при участии хлорофилла, в настоящее время - главный источник образования органического вещества на Земле.

Фотосинтез для получения водорода

Нужно отметить, что одноклеточные фотосинтезирующие водоросли в анаэробных условиях выделяют газообразный водород. Изолированные хлоропласты высших растений, освещаемые в присутствии фермента гидрогеназы катализирующего реакцию 2Н+ + 2е- = Н2, также выделяют водород. Таким образом, возможно фотосинтетическое получение водорода в качестве топлива. Этот вопрос, особеннo в условиях энергетического кризиса, привлекает к себе большое внимание.

Новый вид фотосинтеза

В. Стокениусом был открыт принципиально новый вид фотосинтеза. Оказалось, что у бактерии Halobacterium halobium , живущей в концентрированных растворах хлористого натрия, в окружающей протоплазму белково-липидной мембране содержится хромопротеид бактериородопсин, аналогичный родопсину - зрительному пурпуру глаза животных. В бактериородопсине ретиналь (альдегидная форма витамина А) связан с белком, имеющим молекулярную массу равную 26534, он состоит из 247 аминокислотных остатков. Поглощая свет, бактериородопсин участвует в процессе превращения световой энергии в химическую энергию высокоэнергетических связей АТР. Таким образом, не содержащий хлорофилла организм способен с помощью бактериородопсина использовать световую энергию для синтеза АТР и обеспечения клетки энергией.

Фотосинтез – это совокупность процессов синтеза органических соединений из неорганических благодаря преобразованию световой энергии в энергию химических связей. К фототрофным организмам принадлежат зеленые растения, некоторые прокариоты – цианобактерии, пурпурные и зеленые серобактерии, растительные жгутиковые.

Исследования процесса фотосинтеза начались во второй половине XVIII века. Важное открытие сделал выдающийся русский ученый К. А. Тимирязев, который обосновал учение о космической роли зеленых растений. Растения поглощают солнечные лучи и превращают световую энергию в энергию химических связей синтезированных ими органических соединений. Тем самым они обеспечивают сохранение и развитие жизни на Земле. Ученый также теоретически обосновал и экспериментально доказал роль хлорофилла в поглощении света в процессе фотосинтеза.

Хлорофиллы являются основными из фотосинтезирующих пигментов. По структуре они похожи на гем гемоглобина, но вместо железа содержат магний. Содержание железа необходимо для обеспечения синтеза молекул хлорофилла. Существует несколько хлорофиллов, которые отличаются своим химическим строением. Обязательным для всех фототрофов является хлорофилл а . Хлорофилл b встречается у зеленых растений, хлорофилл с – у диатомовых и бурых водорослей. Хлорофилл d характерен для красных водорослей.

Зеленые и пурпурные фотосинтезирующие бактерии имеют особые бактериохлорофиллы . Фотосинтез бактерий имеет много общего с фотосинтезом растений. Отличается он тем, что у бактерий донором водорода является сероводород, а у растений – вода. У зеленых и пурпурных бактерий нет фотосистемы II. Бактериальный фотосинтез не сопровождается выделением кислорода. Суммарное уравнение бактериального фотосинтеза:

6С0 2 + 12H 2 S → C 6 H 12 O 6 + 12S + 6Н 2 0.

В основе фотосинтеза лежит окислительно-восстановительный процесс. Он связан с перенесением электронов от соединений-поставщиков электронов-доноров к соединениям, которые их воспринимают – акцепторам. Световая энергия превращается в энергию синтезированных органических соединений (углеводов).

На мембранах хлоропластов есть особые структуры – реакционные центры , которые содержат хлорофилла. У зеленых растений и цианобактерий различают две фотосистемы первую (I) и вторую (II) , которые имеют разные реакционные центры и связаны между собой через систему перенесения электронов.

Две фазы фотосинтеза

Состоит процесс фотосинтеза из двух фаз: световой и темновой.

Происходит лишь при наличии света на внутренних мембранах митохондрий в мембранах особых структур – тилакоидов . Фотосинтезирующие пигменты улавливают кванты света (фотоны). Это приводит к «возбуждению» одного из электронов молекулы хлорофилла. С помощью молекул-переносчиков электрон перемещается на внешнюю поверхность мембраны тилакоидов, приобретая определенную потенциальную энергию.

Этот электрон в фотосистеме I может возвратиться на свой энергетический уровень и восстанавливать ее. Может также передаваться НАДФ (никотинамидадениндинуклеотидфосфат). Взаимодействуя с ионами водорода, электроны восстанавливают это соединение. Восстановленный НАДФ (НАДФ Н) поставляет водород для восстановления атмосферного С0 2 до глюкозы.

Подобные процессы происходят в фотосистеме II . Возбужденные электроны могут передаваться фотосистеме I и восстанавливать ее. Восстановление фотосистемы II происходит за счет электронов, которые поставляют молекулы воды. Молекулы воды расщепляются (фотолиз воды ) на протоны водорода и молекулярный кислород, который выделяется в атмосферу. Электроны используются для восстановления фотосистемы II. Уравнение фотолиза воды:

2Н 2 0 → 4Н + + 0 2 + 2е.

При возвращении электронов из внешней поверхности мембраны тилакоидов на предыдущий энергетический уровень выделяется энергия. Она запасается в виде химических связей молекул АТФ, которые синтезируются во время реакций в обеих фотосистемах. Процесс синтеза АТФ с АДФ и фосфорной кислотой называется фотофосфорилированием . Некоторая часть энергии используется для испарения воды.

Во время световой фазы фотосинтеза образуются богатые энергией соединения: АТФ и НАДФ Н. При распаде (фотолизе) молекулы воды в атмосферу выделяется молекулярный кислород.

Реакции протекают во внутренней среде хлоропластов. Могут происходить как при наличии света, так и без него. Синтезируются органические вещества (С0 2 восстанавливается до глюкозы) с использованием энергии, которая образовалась в световой фазе.

Процесс восстановления углекислого газа является циклическим и называется циклом Кальвина . Назван в честь американского исследователя М. Кальвина, который открыл этот циклический процесс.

Начинается цикл с реакции атмосферного углекислого газа с рибулезобифосфатом. Катализирует процесс фермент карбоксилаза . Рибулезобифосфат – это пятиуглеродный сахар, соединенный с двумя остатками фосфорной кислоты. Происходит целый ряд химических преобразований, каждое из которых катализирует свой специфический фермент. Как конечный продукт фотосинтеза образуется глюкоза , а также восстанавливается рибулезобифосфат.

Суммарное уравнение процесса фотосинтеза:

6С0 2 + 6Н 2 0 → С 6 Н 12 О 6 + 60 2

Благодаря процессу фотосинтеза поглощается световая энергия Солнца и происходит преобразование ее в энергию химических связей синтезированных углеводов. По цепям питания энергия передается гетеротрофным организмам. В процессе фотосинтеза поглощается углекислый газ и выделяется кислород. Весь атмосферный кислород имеет фотосинтетическое происхождение. Ежегодно выделяется свыше 200 млрд. тонн свободного кислорода. Кислород защищает жизнь на Земле от ультрафиолетового излучения, создавая озоновый экран атмосферы.

Процесс фотосинтеза малоэффективен, так как в синтезированное органическое вещество переводится лишь 1-2 % солнечной энергии. Связано это с тем, что растения недостаточно поглощают свет, часть его поглощается атмосферой и т. п. Большая часть солнечного света отражается от поверхности Земли назад в космос.

Химическое уравнение процесса фотосинтеза в общем можно представить в следующем виде:

6СО 2 + 6Н 2 О + Qсвета → С 6 Н 12 О 6 + 6О 2 .

Фотосинтез – процесс, при котором происходит поглощение электромагнитной энергии солнца хлорофиллом и вспомогательными пигментами и превращение её в химическую энергию, поглощение углекислого газа из атмосферы, восстановление его в органические соединения и возвращение кислорода в атмосферу.

В процессе фотосинтеза из простых неорганических соединений (СО 2 , Н 2 О) строятся различные органические соединения. В результате происходит перестройка химических связей: вместо связей С – О и Н – О возникают связи C – C и C – H, в которых электроны занимают более высокий энергетический уровень. Таким образом, богатые энергией органические вещества, которыми питаются и за счет которых получают энергию (в процессе дыхания) животные и человек, первоначально создаются в зеленом листе. Можно сказать, что практически вся живая материя на Земле является результатом фотосинтетической деятельности.

Датой открытия процесса фотосинтеза можно считать 1771 г. Английский ученый Дж. Пристли обратил внимание на изменение состава воздуха вследствие жизнедеятельности животных. В присутствии зеленых растений воздух вновь становился пригодным как для дыхания, так и для горения. В дальнейшем работами ряда ученых (Я. Ингенгауз, Ж. Сенебье, Т. Соссюр, Ж.Б. Буссенго) было установлено, что зеленые растения из воздуха поглощают С0 2 , из которого при участии воды на свету образуется органическое вещество. Именно этот процесс в 1877 г. немецкий ученый В. Пфеффер назвал фотосинтезом. Большое значение для раскрытия сущности фотосинтеза имел закон сохранения энергии, сформулированный Р. Майером. В 1845 г. Р. Майер выдвинул предположение, что энергия, используемая растениями, - это энергия Солнца, которую растения в процессе фотосинтеза превращают в химическую энергию. Это положение было развито и экспериментально подтверждено в исследованиях замечательного русского ученого К.А. Тимирязева.

Фотосинтез включает как световые, так и темновые реакции. Был проведен ряд экспериментов, доказывающих, что в процессе фотосинтеза происходят не только реакции, идущие с использованием энергии света, но и темновые, не требующие непосредственного участия энергии света. Можно привести следующие доказательства существования темновых реакций в процессе фотосинтеза:

1) фотосинтез ускоряется с повышением температуры. Отсюда прямо следует, что какие-то этапы этого процесса непосредственно не связаны с использованием энергии света. Особенно резко зависимость фотосинтеза от температуры проявляется при высоких интенсивностях света. По-видимому, в этом случае скорость фотосинтеза лимитируется именно темновыми реакциями;

2) эффективность использования энергии света в процессе фотосинтеза оказалась выше при прерывистом освещении. При этом для более эффективного использования энергии света длительность темновых промежутков должна значительно превышать длительность световых.

Пигменты фотосинтеза

Для того чтобы свет мог оказывать влияние на растительный организм и, в частности, быть использованным в процессе фотосинтеза, необходимо его поглощение фоторецепторами-пигментами. Пигменты - это окрашенные вещества. Пигменты поглощают свет определенной длины волны. Непоглощенные участки солнечного спектра отражаются, что и обусловливает окраску пигментов. Так, зеленый пигмент хлорофилл поглощает красные и синие лучи, тогда как зеленые лучи в основном отражаются. Видимая часть солнечного спектра включает длины волн от 400 до 700 нм. Вещества, поглощающие весь видимый участок спектра, кажутся черными.

Пигменты, сконцентрированные в пластидах, можно разделить на три группы: хлорофиллы, каротиноиды, фикобилины .

К группе хлорофиллов относят органические соединения, которые содержат 4 пиррольных кольца, соединённых атомами магния и имеющие зелёную окраску.

В настоящее время известно около десяти хлорофиллов. Они отличаются по химическому строению, окраске, распространению среди живых организмов. У всех высших растений содержатся хлорофиллы а и b. Хлорофилл с обнаружен в диатомовых водорослях, хлорофилл d - в красных водорослях.

Основными пигментами, без которых фотосинтез не идет, являются хлорофилл а для зеленых растений и бактериохлорофиллы для бактерий. Впервые точное представление о пигментах зеленого листа высших растений было получено благодаря работам крупнейшего русского ботаника М.С. Цвета (1872-1919). Он разработал новый хроматографический метод разделения веществ и выделил пигменты листа в чистом виде.

Хроматографический метод разделения веществ основан на их различной способности к адсорбции. Метод этот получил широкое применение. М.С. Цвет пропускал вытяжку из листа через стеклянную трубку, заполненную порошком - мелом или сахарозой (хроматографическую колонку). Отдельные компоненты смеси пигментов различались по степени адсорбируемости и передвигались с разной скоростью, в результате чего они концентрировались в разных зонах колонки. Разделяя колонку на отдельные части (зоны) и используя соответствующую систему растворителей, можно было выделить каждый пигмент. Оказалось, что листья высших растений содержат хлорофилл а и хлорофилл b, а также каротиноиды (каротин, ксантофилл и др.). Хлорофиллы, так же как и каротиноиды, нерастворимы в воде, но хорошо растворимы в органических растворителях. Хлорофиллы а и b различаются по цвету: хлорофилл а имеет сине-зеленый оттенок, а хлорофилл b - желто-зеленый. Содержание хлорофилла а в листе примерно в три раза больше по сравнению с хлорофиллом b.

Каротиноиды - это желтые и оранжевые пигменты алифатического строения, производные изопрена. Каротиноиды содержатся во всех высших растениях и у многих микроорганизмов. Это самые распространенные пигменты с разнообразными функциями. Каротинойды, содержащие кислород, получили название ксантофиллы. Основными представителями каротиноидов у высших растений являются два пигмента - каротин (оранжевый) и ксантофилл (желтый). В отличие от хлорофиллов каротиноиды не поглощают красные лучи, а также не обладают способностью к флуоресценции. Подобно хлорофиллу каротиноиды в хлоропластах и хроматофорах находятся в виде нерастворимых в воде комплексов с белками. Каротиноиды, поглощая определенные участки солнечного спектра, передают энергию этих лучей на молекулы хлорофилла. Тем самым они способствуют использованию лучей, которые хлорофиллом не поглощаются.

Фикобилины - красные и синие пигменты, содержащиеся у цианобактерий и некоторых водорослей. Исследования показали, что красные водоросли и цианобактерий наряду с хлорофиллом а содержат фикобилины. В основе химического строения фикобилинов лежат четыре пиррольные группировки.

Фикобилины представлены пигментами: фикоцианином, фикоэритрином и аллофикоцианином. Фикоэритрин - это окисленный фикоцианин. Фикобилины образуют прочные соединения с белками (фикобилинпротеиды). Связь между фикобилинами и белками разрушается только кислотой.

Фикобилины поглощают лучи в зеленой и желтой частях солнечного спектра. Это та часть спектра, которая находится между двумя основными линиями поглощения хлорофилла. Фикоэритрин поглощает лучи с длиной волны 495- 565 нм, а фикоцианин - 550- 615 нм. Сравнение спектров поглощения фикобилинов со спектральным составом света, в котором проходит фотосинтез у цианобактерий и красных водорослей, показывает, что они очень близки. Это позволяет считать, что фикобилины поглощают энергию света и, подобно каротиноидам, передают ее на молекулу хлорофилла, после чего она используется в процессе фотосинтеза. Наличие фикобилинов у водорослей является примером приспособления организмов в процессе эволюции к использованию участков солнечного спектра, которые проникают сквозь толщу морской воды (хроматическая адаптация). Как известно, красные лучи, соответствующие основной линии поглощения хлорофилла, поглощаются, проходя через толщу воды. Наиболее глубоко проникают зеленые лучи, которые поглощаются не хлорофиллом, а фикобилинами.

Свойства хлорофилла

Все хлорофиллы являются магниевыми солями пиррола. В центре молекулы хлорофилла находятся магний и четыре пиррольных кольца, соединенные друг с другом метановыми мостиками.

По химическому строению хлорофиллы - сложные эфиры дикарбоновой органической кислоты - хлорофиллина и двух остатков спиртов - фитола и метилового.

Важнейшей частью молекулы хлорофилла является центральное ядро. Оно состоит из четырех пиррольных пятичленных колец, соединенных между собой углеродными мостиками и образующих большое порфириновое ядро с атомами азота посередине, связанными с атомом магния. В молекуле хлорофилла есть дополнительное циклопентаноновое кольцо, которое содержит карбонильную, а также карбоксильную группы, связанные эфирной связью с метиловым спиртом. Наличие в порфириновом ядре конъюгированной по кругу системы десяти двойных связей и магния обусловливает характерный для хлорофилла зеленый цвет.

Хлорофилл в отличается от хлорофилла а только тем, что вместо метальной группы во втором пиррольном кольце имеет альдегидную группу СОН. Хлорофилла имеет сине-зеленую окраску, а хлорофилл в -- светло-зеленую. Адсорбируются они в разных слоях хроматограммы, что свидетельствует о разных химических и физических свойствах. По современным представлениям, биосинтез хлорофилла в идет через хлорофилл а.

Флуоресценция - это свойство многих тел под влиянием падающего света, в свою очередь, излучать свет: при этом длина волны излучаемого света обычно больше длины - волны возбуждающего света. Одним из важнейших свойств хлорофиллов является их ярко выраженная способность к флуоресценции, которая интенсивна в растворе и угнетена в хлорофилле, содержащемся в тканях листьев, в пластидах. Если смотреть на раствор хлорофилла в лучах света, проходящего через него, то он кажется изумрудно-зеленым, если же рассматривать его в лучах отраженного света, то он приобретает красную окраску - это явление флуоресценции.

Хлорофиллы различаются по спектрам поглощения, при этом у хлорофилла b по сравнению с хлорофиллом а полоса поглощения в красной области спектра несколько смещена в сторону коротковолновых лучей, а в сине-фиолетовой области максимум поглощения смещен в сторону длинноволновых (красных) лучей.

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...