Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Полиэтилен пропускает ультрафиолет. Пропускает ли монолитный и сотовый поликарбонат ультрафиолетовые лучи

Чтобы ответить на этот вопрос, разберемся с природой такого явления, как ультрафиолет, и с природой такого материала, как оргстекло.

Пока мы не подошли к подробным характеристикам, мы ответим на вопрос — Оргстекло пропускает ультрафиолет? Да пропускает!

Ультрафиолетовое излучение — это лучи, которые по длине волны располагаются сразу за видимым спектром. Диапазон длин волн для ультрафиолета составляет 10-400 нм. Диапазон 10-200 нм называют вакуумным или «дальним», так как лучи с такой длиной волны присутствуют исключительно в космическом пространстве и поглощаются атмосферой планеты. Оставшуюся часть диапазона называют «ближним» ультрафиолетом которые подразделяют 3 категории излучений:

  • длина волны 200-290 нм — коротковолновое;
  • длина волны 290-350 нм — средневолновое;
  • длина волны 350-400 нм — длинноволновое.

Каждый тип ультрафиолетового излучение производит различное воздействие на живые организмы. Коротковолновое — наиболее высокоэнергетичное излучение, повреждает биомолекулы, вызывает разрушение ДНК. Средневолновое — вызывает ожоги кожного покрова у человека, растения переносят кратковременное облучение без последствий, но при длительном происходит угнетение жизненных фенкций и гибель.

Длинноволновое — практически безвредно жизнедеятельности организма человека, безопасно и полезно для растений. Диапазон коротковолнового ультрафиолета и часть спектра средневолнового диапазона поглощает наша «защитная броня» — озоновый слой. До поверхности планеты, среды обитания живых существ и растений, добирается часть диапазона средневолнового излучения и весь длинноволновой диапазон, т.е. спектр полезных лучей и не вредящих при непродолжительном облучении.

Оргстекло — это химическая синтетическая полимерная структура метилметакрилата, представляет собой прозрачный пластик. Светопропускание несколько ниже чем у обыкновенного силикатного стекла, легко поддается механической обработке, небольшой вес. Оргстекло неустойчиво к воздействию некоторых растворителей — ацетона, бензола и спиртов. Производится на основе стандартного химического состава. Отличия марок и производителей заключаются в придании специфических свойств: ударопрочности, теплостойкости, защиты от УФ-излучения и т.д.

Стандартное оргстекло пропускает ультрафиолет. Его излучения и характеризуется коэффициентом пропускания:

  • не более 1%, для длины волны 350 нм;
  • не менее 70%, для длины волны 400нм.

Т.е. оргстекло пропускает только длинноволновое излучение, у самой границы диапазона длин волн, наиболее безопасное и наиболее полезное для живых организмов.

Стоит отметить, что у оргстекла невысокая устойчивость к механическому воздействию. Со временем, при попадании на него абразивных частиц, в процессе очистки поверхность повреждается, стекло приобретает матовость и снижает свою способность к пропусканию как видимого света, так и ультрафиолетового излучения.

Когда говорят о теплицах, то чаще всего представляют себе в качестве покрытий стекло, хотя в настоящее время в Европе стекло вряд ли можно назвать самым популярным материалом. Для покрытий подойдет любой прозрачный материал - стекло или пластик, - который будет пропускать как можно больше света и удерживать тепло. Теплица должна улавливать свет. Солнечный свет и тепло достигают поверхности земли в виде коротковолнового излучения. Различают прямое излучение (например, в безоблачный день), а также диффузное излучение, на наших широтах в теплицах наиболее частое. Причинами диффузного излучения могут быть, например, облака, атмосферные помехи, а также загрязненность атмосферы. К этому добавляются отраженные лучи, которые "отбрасываются" от предметов. В теплицах солнечное излучение используется даже дважды: во-первых, для накапливания тепла, во-вторых - для фотосинтеза, то есть для создания в растениях органических веществ.

Использование парникового эффекта для удержания тепла

Когда солнечное излучение - прямое, диффузное или отраженное - проходит сквозь прозрачные материалы - это процесс коротковолнового излучения. Предметами внутри теплицы коротковолновые лучи абсорбируются и отражаются, а затем передаются как длинноволновое тепловое излучение. Стекло, акриловые или поликарбонатные покрытия препятствуют выходу этого вновь образованного излучения. В результате в теплице повышается температура. Пленка, напротив, пропускает часть тепловых лучей наружу.

Парниковый или тепличный эффект каждый из нас испытывал на себе, например, оставляя на солнце автомобиль, после чего внутри машины температура сильно повышается именно потому, что тепло не имеет выхода наружу. Чтобы использовать тепло, которое появляется в результате парникового эффекта, нужно знать, как распределяется температура внутри теплицы. Сначала тепло всегда, независимо от того, в каком направлении оно распространяется, стремится к наиболее холодному месту. Это называют теплопроводностью. О теплопроводности дерева, стали и алюминия мы уже писали. Однако не менее важно учитывать теплопроводность стен, почвы или фундамента. Кроме того следует принимать во внимание конвекцию воздуха.

Теплопроводность предмета обозначается величиной К (коэффициентом Фикентшера). Чем ниже величина К, тем лучше его изолирующие свойства.

Конвекция воздуха и теплопроводность материалов опосредованным образом определяют и выбор места (например, с учетом проблемы с ветром). Теплый воздух поднимается, холодный - опускается. На конвекцию и теплопроводность негативно влияет скорость ветра. Чем больше разница между внешней и внутренней температурой, тем больше тепла проникает наружу через поверхность теплицы. Величина К остекления сказывается на затратах на обогрев теплицы. Относительно сохранения тепла в теплицах следует коснуться еще одного понятия: теплового излучения . Это волны, которые передаются непосредственно от одного тела другому. При этом можно использовать тепло, накапливающееся в твердых телах, например в емкости с водой, стенах и облицовке полов.

Темные предметы поглощают больше тепла, чем светлые , так как они не отражают солнечные лучи, а передают их, например ночью, окружающей среде.

Исходя из вышеизложенного, рассмотрим некоторые материалы в качестве покрытия теплиц.

Пленка

Помните, что любая пленка загрязняет окружающую среду, даже если она используется в течение трех или пяти лет! Промышленным теплицам не обойтись без пленок, хотя бы из-за их дешевизны, однако садоводы-любители используют их не так часто: для защиты растений от морозов и вредных насекомых или для более раннего получения урожая. Прежде чем использовать пленку для теплицы, подумайте, так ли это необходимо. Для маленьких теплиц или парников предлагается чаще всего два вида пленок :

Полиэтиленовая пленка - дешевая, но недостаточно прочная и долговечная, для защиты от ультрафиолетового излучения проводят специальную стабилизирующую обработку. В саду лучше пользоваться только стабилизированной пленкой, другие виды пленок быстро рвутся, на свету - уже через несколько недель. Прочность пленок, используемых для парников или теплиц, повышается за счет волокон в виде сетки, вплетенных в материал пленки. Поэтому такие пленки называются сетками. В продаже имеются даже сетки, которые дополнительно оклеены пленкой, образуя воздушную подушку.

Однако все эти усовершенствования снижают способность пленки пропускать свет. Полиэтиленовые пленки пропускают ультрафиолетовые лучи, но в недостаточной степени, если пленки стабилизированы ультрафиолетовыми лучами. К сожалению, пленки пропускают наружу и тепло. Исключением являются полиэтиленовые пленки, содержащие добавки и в результате не пропускающие длинноволновые лучи. Полиэтиленовые пленки не создают проблем как в уходе, так и относительно внешней среды. Этого нельзя сказать о более прочной поливиниловой пленке . Хотя поливиниловая пленка не пропукает ультрафиолетовых лучей, она препятствует и прохождению тепловых лучей. На определенные овощные культуры это влияет положительно и ведет к их росту. Однако переработать отходы этой пленки очень сложно. Это нужно учитывать тем, кого беспокоит состояние окружающей среды. Покупая пленку, обязательно следует удостовериться в ее прочности. В настоящее время многи производители дают гарантии пленке на три года и более.

Стекло

Если вы хотите, чтобы ваша теплица пропускала от 89 до 92% света, то вряд ли вам удастся найти альтернативу стеклу. Для строительства теплиц используются такие сорта стекла, как полированное (светлое, гладкое) и светопрозрачное . При этом полированное стекло ровное и гладкое с обеих сторон, а светопрозрачное стекло с одной стороны "хрящеобразное" ("хрящеобразную" сторону светопрозрачного стекла укладывают внутрь!). За счет такой поверхности свет внутри теплицы лучше рассеивается. Однако исследования Ганноверского института показали, что разница между рассеиванием света через полированное и светопрозрачное стекло минимальна.

Стеклянные пластины поставляются стандартных размеров. Стекло лучше вставлять большими пластинами. Стекло толщиной менее 3 мм из соображений безопасности тоже лучше не использовать. Стекло толщиной от 4 мм обеспечивает безопасность и необходимую равномерную изоляцию. Как дополнительную защиту от морозов можно вставить пленку с "пупырышками". Однако следует учесть, что такая пленка легко пачкается и не практична для регионов с длительными морозными периодами. Для лучшей теплоизоляции следует воспользоваться двойным остекленением : устанавливаются двойные рамы, стекла в которых отделяются друг от друга промежуточными опорными брусками. Нужно предусмотреть возможность вынимать внутреннее стекло для очистки. В настоящее время обычно применяются сварные или клеевые, иногда для лучшей изоляции наполненные углекислым газом стекла, которые не загрязняются изнутри. Хотя светопроницаемость стекол от этого значительно ухудшается, теплоизоляция сравнима с двойным остеклением (толщиной 16мм).

На фото - алюминиевая теплица с полупрозрачным стеклом и большими форточками.

Изолирующее стекло зачастую используется для боковых стенок теплиц, при этом из теплицы можно наблюдать сад или из сада видеть растения в теплице. Для крыш использование такого стекла чаще всего невозможно из-за статических причин.

Двойные гофрированные стекла

Постепенно этот материал стал самым популярным для тех, кто строит качественные теплицы.

К сожалению, под этим наименованием предлагается множество продукции самого разного качества. Толщина стекол колеблется между 4 и 32 мм. Наряду с двойными стеклами иногда предлагают тройные. Качество двойных или тройных стекол различается в зависимости от производителей, различны также ширина пластин, форма гофрировки и толщина стекла. Стоимость стекла тоже различна. Для всех стекол существуют свои инструкции по монтажу, которые обязательно следует учитывать, иначе вы лишаетесь гарантии качества.

Двойные гофрированные пластины нужно тщательно загерметизировать, чтобы внизу скапливался конденсат. Тщательная обработка пластин в дальнейшем гарантирует их чистоту.

При монтаже сторона с противохолодовым покрытием укладывается вниз. Защитную пленку удаляйте в самый последний момент. Силикон может повредить двойным гофрированным пластинам, поэтому обязательно придерживайтесь указаний фирм-производителей! Обязательно загерметизируйте детали конструкции.

Большинство производителей предлагают в основном два вида стекла: поликарбонатное и акриловое стекло, первое известно также под названием оргстекла, а второе - плексигласа. В зависимости от толщины пластины различаются и изолирующие свойства стекла. Оба вида пластин прозрачные и поэтому хорошо подходят для разведения растений.

С помощью двойного гофрированного стекла можно сэкономить до 40% энергии, а с помощью тройного стекла - даже 50%.

Для герметизации в продаже имеются специальные планки или клеевые биндеры. Не загерметизированные пластины загрязняются и зарастают водорослями. Для изоляции используются герметизаторы только определенного вида (резиновые или пластиковые) или замазки. Теперь рассмотрим различия между этими материалами. Поликарбонад - более растяжимый, мягкий ударостойкий, почти небьющийся и более подходящий для больших пролетов и изгибов материал. Однако он пропускает только часть ультрафиолетовых лучей. Степень светопрозрачности (при толщине 16 мм) составляет 77%. Акрил - более хрупкий материал, причем его прочность уменьшается при понижении температуры и под воздействием града. Однако ультрафиолетовые лучи в важном для растений диапазоне проникают сквозь этот пластик беспрепятственно. Светопроницаемость (при толщине 16 мм) составляет 86%. Пластины предлагаются различной ширины и толщины. При покупке следует учитывать размер пролетов. Пластина толщиной 6 мм под сильным напором ветра прогибается, если пролет больше 50 см. Если такая пластина удерживается только скобами, сильный ветер без труда может повредить теплицу. При наличии пластин толщиной 16 мм пролет может достигать одного метра. В этом случае пластины следует закрепить с помощью резиновых или пластиковых герметизаторов по всей длине.

Благодаря профилям с пенонаполнителем можно обеспечить хорошую теплоизоляцию.

При наличии специальных австрийских акриловых пластин толщиной 20 мм можно вообще отказаться от переплетов: они монтируются по принципу паз-шип и в результате обретают необходимую устойчивость.


В стране и за рубежом создано много видов защитной пленки для парников и теплиц. Давайте попробуем разобраться в этом многообразии.

Виды полимерной пленки

Полиэтиленовая пленка. В настоящее время в овощеводстве нашей страны широко применяется обычная нестабилизированная полиэтиленовая пленка (ГОСТ 10354-82, рецептура 10803-020). Получают ее из природного газа.

Полиэтиленовая пленка чуть-чуть синевата и имеет слегка матовый оттенок, высокоэластична. Прочность ее одинакова по длине и ширине и равна более 100 кг1см2. С понижением температуры прочность пленки возрастает.

В первый период эксплуатации она сохраняет свои качества при температуре -65град. Однако установлено, что у пленки, бывшей в эксплуатации, морозостойкость понижается и при температуре минус 5-10град. она становится хрупкой. Поэтому полиэтиленовую пленку, прослужившую лето, нельзя использовать для укрытия зимой или поздней осенью.

Полиэтиленовая пленка незначительно изменяет линейные размеры в зависимости от температуры, что позволяет крепить ее жестко к элементам конструкций.

Под действием ультрафиолетовых лучей и повышенной температуры пленка «стареет», и вследствие этого ухудшается ее прочность на разрыв, светопроницаемость и морозостойкость. При использовании пленки толщиной 0,05 мм в качестве экрана в остекленных теплицах она служит от 3 до 5 лет, в то время как аналогичная пленка, находясь под прямым воздействием ультрафиолетовых лучей, изнашивается в течение 3-4 месяцев.

Долговечность полиэтиленовой пленки зависит от толщины, условий эксплуатации и применяемых конструкций.

Более тонкая пленка дешевле, но для тоннельных укрытий она должна быть толщиной не менее 0,08-0,1, мм. В то же время считают, что использовать пленку толщиной более 0,15 мм для укрытий на необогреваемом грунте невыгодно.

Полиэтиленовую пленку выпускают в рулонах с шириной полотна (рукава) 1,2-3 м.

Полиэтиленовая пленка обычно пропускает 80-90 % солнечного света. Но в специальных конструкциях с пленкой, где меньше затеняющих переплетов, освещенность бывает даже выше, чем под стеклом.

Следует отметить, что используемая в овощеводстве полиэтиленовая пленка специально для этих целей не создавалась и, естественно, обладает существенными недостатками: коротким сроком службы (4-5 месяцев); гидрофобной поверхностью, снижающей поступление света в результате загрязнения и образования светоотражающего экрана за счет мелкокапельного водяного конденсата; высокой степенью прозрачности для инфракрасного излучения, что ухудшает тепловой режим в укрытиях ночью.

Для укрытий многократного использования лучше применять светостабилизированную полиэтиленовую пленку (ГОСТ 10354-83, рецептура 108-08 или 158-08). Стабилизация пленки достигается путем введения в ее состав веществ, препятствующих разрушению полимера под воздействием атмосферных условий. Срок службы этой пленки при непрерывной эксплуатации достигает одного года, а на тоннельных укрытиях она может использоваться 2-3 сезона. Внешне она не отличается от нестабилизированной и определить ее можно по этикетке на рулоне.

Ленинградское научно-производственное объединение «Пластполимер» и Агрофизический институт разработали рецепт получения новой гидрофильной пленки (ГОСТ 10354-73, рецептура 108-82). В состав этой пленки входят свето- и термостабилизаторы, которые повышают срок ее эксплуатации в 2-3 раза по сравнению с обычной. Поверхность пленки гидрофильная, она мало загрязняется, конденсат влаги образуется в виде сплошного слоя, что повышает светопроницаемость и устраняет «капель». Способность новой пленки пропускать инфракрасное (тепловое) излучение снижена с 80 до 30-35 %. В производственных испытаниях урожайность овощей в теплицах, покрытых гидрофильной пленкой, повышалась на 10-15 %.

Теплоудерживающая полиэтиленовая пленка (ГОСТ 10354-83, рецептура 108-143Г или 158-143Г) значительно меньше пропускает инфракрасные лучи, в результате температура под ней на 1,5-2град. выше, чем под обычной полиэтиленовой пленкой. Улучшенный тепловой режим под новой пленкой позволяет увеличить ранний урожай овощей. На изготовление теплоудерживающей пленки требуется меньше полиэтилена за счет наполнителя (каолина).

В настоящее время теплоудерживающую пленку промышленность выпускает под маркой «СИК».

Особыми свойствами обладает вспененная пленка, которая состоит из двух слоев: монолитного и вспененного. Она пропускает 70 % видимого спектра солнечных лучей в рассеянном виде, в результате температура воздуха под пленкой несколько уменьшается днем и поддерживается на более высоком уровне ночью. «Вспененная» пленка рекомендуется для укрытий тоннельного типа и парников, а также для вегетативного размножения растений. При ее изготовлении достигается экономия полиэтилена до 20 % за счет его вспенивания.

Полиэтиленовая фоторазрушаемая (ГОСТ 10354-82) пленка обладает свойством разрушаться после определенного срока эксплуатации. В зависимости от рецептуры эта пленка имеет следующие средние сроки начала разрушения:

рецептура 108-70 с радиационным облучением - 20 дней;

- « - 108-70 без облучения - 45 дней;

- « - 108-71 без облучения - 60 дней.

Фоторазрушаемую пленку рекомендуют применять для мульчирования и в качестве бескаркасных укрытий. Для этих целей ее изготавливают толщиной 0,04-0,06 мм, а перед применением перфорируют круглыми или щелевидными отверстиями.

Поливинилхлоридная пленка (ГОСТ 16272-79, рецепт С). По внешнему виду она напоминает целлофан. Поливинилхлоридная пленка отличается высокой прозрачностью, она пропускает до 90 % видимого света и около 80 % ультрафиолетовой радиации. В отличие от полиэтиленовой она почти не пропускает инфракрасных (тепловых) лучей. Благодаря этому ночью под укрытием поливинилхлоридной пленкой бывает теплее, чем под полиэтиленовой. Эта пленка отличается большой долговечностью в эксплуатации, достигающей 2-3 года. В то же время она в 2-3 раза дороже, чем полиэтиленовая. При этом необходимо учесть, что Поливинилхлоридная пленка отличается относительно низкой морозостойкостью (температура хрупкости -15 град.С), поэтому ее нельзя оставлять зимой на необогреваемых сооружениях.

Пленка полиэтиленовая черная (ГОСТ 10354-82 рецептура 108-157 или 158-157) за счет стабилизации сажей практически светонепроницаема уже при толщине 0,04 мм. Она предназначена для мульчирования почвы овощных и других культур. Позволяет улучшить гидротермический режим почвы в корнеобитаемом слое и подавляет сорную растительность, в результате увеличивается урожайность и сокращаются затраты труда по уходу.

Для мульчирования в течение одного сезона рекомендуют применять черную пленку толщиной 0,04-0,05 мм, в течение двух лет - толщиной 0,06-0,08 мм, трех-четырех - 0,1 - 0,12 мм.

В обыденной жизни мы часто пользуемся готовыми блоками знаний, полученными ещё в детстве, нередко в школе. Мы практически не анализируем их, априори считая их бесспорными, не требующими ни дополнительных доказательств, ни анализа. И если спросить нас, к примеру, пропускает ли стекло ультрафиолет, большинство уверенно ответит: «Нет, не пропускает, мы это ещё в школе запомнили!».

Но однажды появится наш друг и скажет: «Знаешь, я вчера весь день провёл за рулём, солнце было нещадное, всё предплечье со стороны окна загорело!» И в ответ на скептическую улыбку закатает рукав рубашки, демонстрируя покрасневшую кожу… Так разрушаются стереотипы, и человек вспоминает, что по природе своей он - исследователь.

И всё же - как быть с нашим вопросом? Ведь мы знаем, что именно ультрафиолет является причиной загара кожи у людей. Ответ не так уж однозначен, как поначалу может показаться. И он будет звучать так: «Смотря, какое стекло и какой ультрафиолет!»

Свойства ультрафиолетовых лучей

Ультрафиолетовое излучение имеет длину волн примерно от 10 до 400 нм. Это довольно большой разброс, и, соответственно, лучи в разных частях этого диапазона будут иметь различные свойства. Физики делят весь ультрафиолетовый спектр на три разных типа:

  1. Тип С или жёсткое УФ излучение . Характеризуется длиной волны от 100 до 280 нм. Это излучение не зря получило своё название, оно крайне опасно для человека, приводит к раку кожи или быстрому ожогу глаз. К счастью, лучи диапазона практически полностью задерживаются атмосферой Земли. Человек может столкнуться с ними только очень высоко в горах, но и здесь они крайне ослаблены.
  2. Тип В или среднее УФ излучение . Длина его волн - от 280 до 315 нм. Ласковыми к человеку эти лучи тоже не назовёшь, они похожи своими свойствами на предыдущий тип, но всё же действуют менее губительно. Как и тип С, они также теряются в атмосфере, но задерживаются ею слабее. Поэтому 20% из них всё же доходят до поверхности планеты. Именно лучи этого типа приводят к появлению на нашей коже загара. Но это излучение не способно проникнуть сквозь обычное стекло.
  3. Тип А или мягкое УФ излучение . От 315 до 400 нм. Атмосфера ему нипочём, и оно беспрепятственно проходит до уровня океана, иногда проникая даже сквозь лёгкую одежду. Это излучение отлично преодолевает слой обычного оконного стекла, появляясь в наших квартирах и офисах, приводя к выгоранию обоев, ковров и поверхности мебели. Но «лучи А» никак не могут привести к загару кожи у человека!

Правда, выделяется ещё и экстремальный ультрафиолет с длиной волны ниже 100 нанометров, но он проявляет себя только в условиях, близких к вакууму, и в условиях земной поверхности им можно пренебречь.

А что же ответить своему другу-автомобилисту? Почему загорело его предплечье?

Разные типы стёкол

И здесь мы подходим ко второй части нашего ответа: «Смотря, какое стекло!» Ведь стёкла бывают разные: и по составу, и по толщине. Например, кварцевое пропускает сквозь себя все три типа УФ излучений. Такая же картина наблюдается при использовании оргстекла.
А силикатное, применяемое в оконных рамах, да и в автомобилях, пропускает только «мягкое излучение».

Впрочем, здесь имеется одно важное «НО»! Если стекло очень тонкое или очень прозрачное, качественно отшлифованное (как в случае с автомобилем), оно пропустит и малую долю «излучения В», ответственного за наш загар. Этого не хватит, чтобы загореть, постояв возле окна часик. Но если водитель провёл за рулём много часов, подставляя кожу солнцу, то она загорит даже сквозь закрытые стёкла. Особенно, если кожа нежная, а дело происходит высоко по отношению к уровню моря.

И теперь, услышав вопрос, проходит ли через стекло ультрафиолет, мы сможем ответить весьма неодносложно - проходит, но только в ограниченной части спектра, и только если говорить об обычном оконном стекле.

Дачников, принявших решение использовать поликарбонат для возведения на своём загородном участке парника либо теплицы, для выращивания овощей, интересует вопрос: «Пропускает ли поликарбонат ультрафиолетовые лучи?». Возникновение подобного вопроса небеспочвенно, ведь известен вред, который оказывает ультрафиолет на растения. Чтобы иметь возможность ответить на возникший вопрос, и принять окончательное решение об использовании полимера, потребуется обладать информацией о положительных и отрицательных сторонах материала.

Преимущества материала

Несмотря на то пропускает ли поликарбонат ультрафиолетовые лучи или нет, он обладает огромнейшим количеством несомненных достоинств. В их число вошли такие свойства материала:

  1. Невысокая цена на материал. Поликарбонат не требует постоянных и больших финансовых вложений по уходу за собой во время его эксплуатации.
  2. Структура термопласта такова, что даже смонтированный материал, можно без труда разобрать для хранения или повторно смонтировать.
  3. Эстетические качества, которые присутствуют благодаря производству полимера в широкой цветовой палитре.
  4. Высокий показатель прочности. Термопласт способен выдержать высокую механическую нагрузку (ударную либо под давлением высокой массы чего-либо).
  5. Возможность производить с полимером самостоятельные монтажные работы. Материал хорошо поддаётся механической обработке (сверлению, резанию), поэтому в работе с ним не потребуется затраты сверх усилий или обладания особыми навыками.
  6. Быстрота осуществления монтажных работ с материалом.
  7. Превосходная гибкость панелей термопласта, позволяющая использовать их даже в сложных конструкциях.
  8. Небольшой вес. Поликарбонат легче стекла примерно в пятнадцать раз, а это даёт возможность во время использования материала для парников либо теплиц, не устанавливать для строения фундамент.
  9. Прозрачность цветных листов материала достигает отметки в пятьдесят процентов, а для прозрачных плит этот показатель достигает восьмидесяти пяти процентов. Длительность эксплуатации не влияет на понижение коэффициента проницаемости световых лучей.
  10. Хорошее рассеивание света присутствует из-за наличия на поверхности панелей защитной плёнки, которая способствует рассеиванию солнечных лучей и защите от проникновения во внутреннюю часть помещения исходящего из солнца ультрафиолета от соприкосновения с поликарбонатом. Это свойство позволяет распределять равномерно лучи Солнца между растениями, если полимер использован в теплицах либо парниках.
  11. Теплопроводность. Это свойство меняется в зависимости от толщины плит. Чем толще панель, тем меньше показатель теплопроводности и наоборот.
  12. Пожаробезопасность. Материал быстро не воспламеняется и обладает свойством самозатухания. Полимер начинает плавиться лишь под воздействием температуры в 570 градусов по Цельсию, при этом не выделяет в воздушную среду газов, содержащих яд для живых организмов.
  13. Если материал всё же подвергся значительным воздействиям и получил механические повреждения, то он не рассыплется на мелкие частицы, словно стекло и его края не будут столь острыми, чтобы обладать способностью, нанести порез человеческому телу от неосторожного соприкосновения.

Недостатки

Поликарбонат с УФ-защитой и без неё, кроме достоинств, обладает и небольшим количеством недостатков. К их числу следует причислить следующие свойства материала:

  • понижение способностей с пропускания света - это возможно, в случае если ячейки краёв панелей оклеены обычным скотчем или не оклеены вовсе, либо были помыты растворами, содержащими в своём составе растворители, хлор, абразивные частицы;
  • деформация материала может иметь место, если профиль и листы изготовлены разными производителями и неплотно пристают друг к другу либо не было взято во внимание линейное расширение плит;
  • прогибается под тяжестью снега или от сильного воздействия порывов ветра - это возможно, если используемый материал низкого качества или его толщина не соответствует климатическим условиям заданного региона, либо монтажные работы выполнены с ошибками.

Особенности поликарбоната с ультрафиолетовой защитой и без неё

Зная ответ на вопрос: «Пропускает ли поликарбонат ультрафиолетовые лучи?» можно принять окончательное решение, о том, использовать ли термопластовые панели в строительстве теплицы.

Полезно знать: Ведь известно, что ультрафиолет, проникший внутрь парника и находящийся в диапазоне от 390 нанометров, способен нанести вред растениям.

Поликарбонат способен не пропустить ультрафиолет в том случае, если его внешняя поверхность покрыта особой плёнкой, имеющей толщину 20-70 мкм. Без защитной плёнки ультрафиолет будет проникать сквозь полимерные плиты. Материал с защитной плёнкой не желтеет и способен использоваться, не пропуская ультрафиолет, на протяжении десяти лет.

Видео про защиту поликарбоната от ультрафиолета

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...