Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Расчет тонкостенных сосудов. Расчет тонкостенных сосудов Расчет тонкостенных сосудов формула лапласа

В инженерной практике широкое применение находят такие конструкции, как цистерны, водонапорные резервуары, газгольдеры, воздушные и газовые баллоны, купола зданий, аппараты химического машиностроения, части корпусов турбин и реактивных двигателей и т.д. Все эти конструкции с точки зрения их расчета на прочность и жесткость могут быть отнесены к тонкостенным сосудам (оболочкам) (Рис.13.1,а).

Характерной особенностью большинства тонкостенных сосудов является то, что по форме они представляют тела вращения, т.е. их поверхность может быть образована вращением некоторой кривой вокруг осиО -О . Сечение сосуда плоскостью, содержащей ось О -О , называется меридиональным сечением , а сечения, перпендикулярные к меридиональным сечениям, называются окружными . Окружные сечения, как правило, имеют вид конуса. Показанная на рис 13.1б нижняя часть сосуда отделена от верхней окружным сечением. Поверхность, делящая толщину стенок сосуда пополам, называется срединной поверхностью . Считается, что оболочка является тонкостенной, если отношение наименьшего главного радиуса кривизны в данной точке поверхности к толщине стенки оболочки превышает число 10
.

Рассмотрим общий случай действия на оболочку какой-либо осесимметричной нагрузки, т.е. такой нагрузки, которая не меняется в окружном направлении и может меняться лишь вдоль меридиана. Выделим из тела оболочки двумя окружными и двумя меридиональными сечениями элемент (Рис.13.1,а). Элемент испытывает растяжение во взаимно перпендикулярных направлениях и искривляется. Двустороннему растяжению элемента соответствует равномерное распределение нормальных напряжений по толщине стенки и возникновение в стенке оболочки нормальных усилий. Изменение кривизны элемента предполагает наличие в стенке оболочки изгибающих моментов. При изгибе в стенке балки возникают нормальные напряжения, меняющиеся по толщине стенки.

При действии осесимметричной нагрузки влиянием изгибающих моментов можно пренебречь, так как преобладающее значение имеют нормальные силы. Это имеет место тогда, когда форма стенок оболочки и нагрузка на нее таковы, что возможно равновесие между внешними и внутренними усилиями без появления изгибающих моментов. Теория расчета оболочек, построенная на предположении, что нормальные напряжения, возникающие в оболочке, постоянны по толщине и, следовательно, изгиб оболочки отсутствует, называется безмоментной теорией оболочек . Безмоментная теория хорошо работает, если оболочка не имеет резких переходов и жестких защемлений и, кроме того, не нагружена сосредоточенными силами и моментами. Кроме того, эта теория дает более точные результаты, чем меньше толщина стенки оболочки, т.е. чем ближе к истине предположение о равномерном распределении напряжений по толщине стенки.

При наличии сосредоточенных сил и моментов, резких переходов и защемлений сильно усложняется решение задачи. В местах крепления оболочки и в местах резких изменений формы возникают повышенные напряжения, обусловленные влиянием изгибающих моментов. В этом случае применяется так называемая моментная теория расчета оболочек . Следует отметить, что вопросы общей теории оболочек выходят далеко за рамки сопротивления материалов и изучается в специальных разделах строительной механики. В настоящем пособии при расчете тонкостенных сосудов рассматривается безмоментная теория для случаев, когда задача определения напряжений, действующих в меридиональном и окружном сечениях, оказывается статически определимой.

13.2. Определение напряжений в симметричных оболочках по безмоментной теории. Вывод уравнения Лапласа

Рассмотрим осесимметричную тонкостенную оболочку, испытывающую внутреннее давление от веса жидкости (Рис.13.1,а). Двумя меридиональными и двумя окружными сечениями выделим из стенки оболочки бесконечно малый элемент и рассмотрим его равновесие (Рис.13.2).

В меридиональных и окружных сечениях касательные напряжения отсутствуют ввиду симметрии нагрузки и осутствия взаимных сдвигов сечений. Следовательно, на выделенный элемент будут действовать только главные нормальные напряжения: меридиональное напряжение
иокружное напряжение . На основании безмоментной теории будем считать, что по толщине стенки напряжения
ираспределены равномерно. Кроме того, все размеры оболочки будем относить к срединной поверхности ее стенок.

Срединная поверхность оболочки представляет собой поверхность двоякой кривизны. Радиус кривизны меридиана в рассматриваемой точки обозначим
, радиус кривизны срединной поверхности в окружном направлении обозначим. По граням элемента действуют силы
и
. На внутреннюю поверхность выделенного элемента действует давление жидкости, равнодействующая которого равна
. Спроектируем приведенные выше силы на нормаль
к поверхности:

Изобразим проекцию элемента на меридиональную плоскость (Рис.13.3) и на основании этого рисунка запишем в выражении (а) первое слагаемое. Второе слагаемое записывается по аналогии.

Заменяя в (а) синус его аргументом ввиду малости угла и разделив все члены уравнения (а) на
, получим:

(б).

Учитывая, что кривизны меридионального и окружного сечений элемента равны соответственно
и
, и подставляя эти выражения в (б) находим:

. (13.1)

Выражение (13.1) представляет собой уравнения Лапласа, названного так в честь французского ученого, который получил его в начале XIXвека при изучении поверхностного натяжения в жидкостях.

В уравнение (13.1) входят два неизвестных напряжения и
. Меридиональное напряжение
найдем, составив уравнение равновесия на ось
сил, действующих на отсеченную часть оболочки (Рис.12.1,б). Площадь окружного сечения стенок оболочки посчитаем по формуле
. Напряжения
ввиду симметрии самой оболочки и нагрузки относительнго оси
распределены по площади равномерно. Следовательно,

, (13.2)

где вес части сосуда и жидкости, лежащих ниже рассматриваемого сечения;давление жидкости, по закону Паскаля одинаковое во всех направлениях и равное, гдеглубина рассматриваемого сечения, авес единицы объема жидкости. Если жидкость хранится в сосуде под некоторым избыточным в сравнении с атмосферным давлением, то в этом случае
.

Теперь, зная напряжение
из уравнения Лапласа (13.1) можно найти напряжение.

При решении практических задач ввиду того, что оболочка тонкая, можно вместо радиусов срединной поверхности
иподставлять радиусы наружной и внутренней поверхностей.

Как уже отмечалось окружные и меридиональные напряжения и
являются главными напряжениями. Что касается третьего главного напряжения, направление которого нормально к поверхности сосуда, то на одной из поверхностей оболочки (наружной или внутреннейв зависимости от того, с какой стороны действует давление на оболочку) оно равно, а на противоположной – нулю. В тонкостенных оболочках напряженияи
всегда значительно больше. Это означает, что величиной третьего главного напряжения можно пренебречь по сравнению си
, т.е. считать его равным нулю.

Таким образом, будем считать, что материал оболочки находится в плоском напряженном состоянии. В этом случае для оценки прочности в зависимости от состояния материала следует пользоваться соответствующей теорией прочности. Например, применив четвертую (энергетическую) теорию, условие прочности запишем в виде:

Рассмотрим несколько примеров расчета безмоментнтых оболочек.

Пример 13.1. Сферический сосуд находится под действием равномерного внутреннего давления газа(Рис.13.4). Определить напряжения действущие в стенке сосуда и оценить прочность сосуда с использованием третьей теории прочности. Собственным весом стенок сосуда и весом газа пренебрегаем.

1. Ввиду круговой симметрии оболочки и осесимметричности нагрузки напряжения и
одинаковы во всех точках оболочки. Полагая в (13.1)
,
, а
, получаем:

. (13.4)

2. Выполняем проверку по третьей теории прочности:

.

Учитывая, что
,
,
, условие прочности принимае вид:

. (13.5)

Пример 13.2. Цилиндрическая оболочка находится под действием равномерного внутреннего давления газа(Рис.13.5). Определить окружные и меридиональные напряжения, действующие в стенке сосуда, и оценить его прочность с использованием четвертой теории прочности. Собственным весом стенок сосуда и весом газа пренебречь.

1. Меридианами в цилиндрической части оболочки являются образующие, для которых
. Из уравнения Лапласа (13.1) находим окружное напряжение:

. (13.6)

2. По формуле (13.2) находим меридиональное напряжение, полагая
и
:

. (13.7)

3. Для оценки прочности принимаем:
;
;
. Условие прочности по четвертой теории имеет вид (13.3). Подставляя в это условие выражения для окружных и меридиональных напряжений (а) и (б), получаем

Пример 12.3. Цилиндрический резервуар с коническим днищем находится под действием веса жидкости (Рис.13.6,б). Установить законы изменения окружных и меридиональных напряжений в пределах конической и цилиндрической части резервуара, найти максимальные напряженияи
и построить эпюры распределения напряжений по высоте резервуара. Весом стенок резервуара пренебречь.

1. Находим давление жидкости на глубине
:

. (а)

2. Определяем окружные напряжения из уравнения Лапласа, учитывая, что радиус кривизны меридианов (образующих)
:

. (б)

Для конической части оболочки

;
. (в)

Подставляя (в) в (б) получим закон изменения окружных напряжений в пределах конической части резервуара:

. (13.9)

Для цилиндрической части, где
закон распределения окружных напряжений имеет вид:

. (13.10)

Эпюра показана на рис.13.6,а. Для конической части эта эпюра параболическая. Ее математический максимум имеет место в середине общей высоты при
. При
он имеет условное значение, при
максимум напряжений попадает в пределы конической части и имеет реальное значение.


В технике часто встречаются сосуды, стенки которых воспринимают давление жидкостей, газов и сыпучих тел (паровые котлы, резервуары, рабочие камеры двигателей, цистерны и т. п.). Если сосуды имеют форму тел вращения и толщина стенок их незначительна, а нагрузка осесимметрична, то определение напряжений, возникающих в их стенках под нагрузкой, производится весьма просто.

В таких случаях без большой погрешности можно принять, что в стенках возникают только нормальные напряжения (растягивающие или сжимающие) и что эти напряжения распределяются равномерно по толщине стенки.

Расчеты, основанные на таких допущениях, хорошо подтверждаются опытами, если толщина стенки не превосходит примерно минимального радиуса кривизны стенки.

Вырежем из стенки сосуда элемент с размерами и .

Толщину стенки обозначим t (рис. 8.1). Радиусы кривизны поверхности сосуда в данном месте и Нагрузка на элемент - внутреннее давление , нормальное к поверхности элемента.


Заменим взаимодействие элемента с оставшейся частью сосуда внутренними силами, интенсивность которых равна и . Поскольку толщина стенок незначительна, как уже было отмечено, можно считать эти напряжения равномерно распределенными по толщине стенки.

Составим условие равновесия элемента, для чего спроецируем силы, действующие на элемент, на направление нормали пп к поверхности элемента. Проекция нагрузки равна . Проекция напряжения на направление нормали представится отрезком аb, равным Проекция усилия, действующего на грани 1-4 (и 2-3), равна . Аналогично, проекция усилия, действующего по грани 1-2 (и 4-3), равна .

Спроецировав все силы, приложенные к выделенному элементу, на направление нормали пп, получим

Ввиду малости размеров элемента можно принять

С учетом этого из уравнения равновесия получим

Учитывая, что d и имеем

Сократив на и разделив на t , получим

(8.1)

Эта формула называетсяформулой Лапласа. Рассмотрим расчет двух видов сосудов, часто встречающихся на практике: сферического и цилиндрического. При этом ограничимся случаями действия внутреннего газового давления.

а) б)

1. Сферический сосуд. В этом случае и Из (8.1) следует откуда

(8.2)

Так как в данном случае имеет место плоское напряженное состояние, то для расчета на прочность необходимо применить ту или иную теорию прочности. Главные напряжения имеют следующие значения: По третьей гипотезе прочности; . Подставляя и , получаем

(8.3)

т. е. проверка прочности ведется, как в случае одноосного напряженного состояния.

По четвертой гипотезе прочности,
. Так как в данном случае , то

(8.4)

т. е. то же условие, что и по третьей гипотезе прочности.

2. Цилиндрический сосуд. В этом случае (радиус цилиндра) и (радиус кривизны образующей цилиндра).

Из уравнения Лапласа получаем откуда

(8.5)

Для определения напряжения рассечем сосуд плоскостью, перпендикулярной его оси, и рассмотрим условие равновесия одной из частей сосуда (рис. 47 б).

Проецируя на ось сосуда все силы, действующие на отсеченную часть, получаем

(8.6)

где - равнодействующая сил давления газа на днище сосуда.

Таким образом, , откуда

(8.7)

Заметим, что в силу тонкостенности кольца, представляющего собой сечение цилиндра, по которому действуют напряжения , площадь его подсчитана как произведение длины окружности на толщину стенки. Сравнивая и в цилиндрическом сосуде, видим, что

Если толщина стенок цилиндра мала по сравнению с радиусами и , то известное выражение для тангенцальных напряжений приобретает вид

т. е. величину, определенную нами раньше (§ 34).

Для тонкостенных резервуаров, имеющих форму поверхностей вращения и находящихся под внутренним давлением р , распределенным симметрично относительно оси вращения, можно вывести общую формулу для вычисления напряжений.

Выделим (Рис.1) из рассматриваемого резервуара элемент двумя смежными меридиональными сечениями и двумя сечениями, нормальными к меридиану.

Рис.1. Фрагмент тонкостенного резервуара и его напряженное состояние.

Размеры элемента по меридиану и по перпендикулярному к нему направлению обозначим соответственно и , радиусы кривизны меридиана и перпендикулярного к нему сечения обозначим и , толщину стенки назовем t.

По симметрии по граням выделенного элемента будут действовать только нормальные напряжения в меридиальном направления и в направлении, перпендикулярном к меридиану. Соответствующие усилия, приложенные к граням элемента, будут и . Так как тонкая оболочка сопротивляется только растяжению, подобно гибкой нити, то эти усилия будут направлены по касательной к меридиану и к сечению, нормальному к меридиану.

Усилия (Рис.2) дадут в нормальном к поверхности элемента направлении равнодействующую ab , равную

Рис.2. Равновесие элемента тонкостенного резервуара

Подобным же образом усилия дадут в том же направлении равнодействующую Сумма этих усилий уравновешивает нормальное давление, приложенное к элементу

Это основное уравнение, связывающее напряжения и для тонкостенных сосудов вращения, дано Лапласом.

Так как мы задались распределением (равномерным) напряжений по толщине стенки, то задача статически определима; второе уравнение равновесия получится, если мы рассмотрим равновесие нижней, отрезанной каким-либо параллельным кругом, части резервуара.

Рассмотрим случай гидростатической нагрузки (рис.3). Меридиональную кривую отнесем к осям х и у с началом координат в вершине кривой. Сечение проведем на уровне у от точки О . Радиус соответствующего параллельного круга будет х .

Рис.3. Равновесие нижнего фрагмента тонкостенного резервуара.

Каждая пара усилий , действующих на диаметрально противоположные элементы проведенного сечения, дает вертикальную равнодействующую , равную

сумма этих усилий, действующих по всей окружности проведенного сечения, будет равна ; она будет уравновешивать давление жидкости на этом уровне плюс вес жидкости в отрезанной части сосуда .

Зная уравнение меридиональной кривой, можно найти , х и для каждого значения у , и стало быть, найти , а из уравнения Лапласа и

Например, для конического резервуара с углом при вершине , наполненного жидкостью с объемным весом у на высоту h , будем иметь.

В инженерной практике широкое применение находят такие конструкции, как цистерны, водонапорные резервуары, газгольдеры, воздушные и газовые баллоны, купола зданий, аппараты химического машиностроения, части корпусов турбин и реактивных двигателей и т.д. Все эти конструкции с точки зрения их расчета на прочность и жесткость могут быть отнесены к тонкостенным сосудам (оболочкам) (Рис.13.1,а).

Характерной особенностью большинства тонкостенных сосудов является то, что по форме они представляют тела вращения, т.е. их поверхность может быть образована вращением некоторой кривой вокруг осиО -О . Сечение сосуда плоскостью, содержащей ось О -О , называется меридиональным сечением , а сечения, перпендикулярные к меридиональным сечениям, называются окружными . Окружные сечения, как правило, имеют вид конуса. Показанная на рис 13.1б нижняя часть сосуда отделена от верхней окружным сечением. Поверхность, делящая толщину стенок сосуда пополам, называется срединной поверхностью . Считается, что оболочка является тонкостенной, если отношение наименьшего главного радиуса кривизны в данной точке поверхности к толщине стенки оболочки превышает число 10
.

Рассмотрим общий случай действия на оболочку какой-либо осесимметричной нагрузки, т.е. такой нагрузки, которая не меняется в окружном направлении и может меняться лишь вдоль меридиана. Выделим из тела оболочки двумя окружными и двумя меридиональными сечениями элемент (Рис.13.1,а). Элемент испытывает растяжение во взаимно перпендикулярных направлениях и искривляется. Двустороннему растяжению элемента соответствует равномерное распределение нормальных напряжений по толщине стенки и возникновение в стенке оболочки нормальных усилий. Изменение кривизны элемента предполагает наличие в стенке оболочки изгибающих моментов. При изгибе в стенке балки возникают нормальные напряжения, меняющиеся по толщине стенки.

При действии осесимметричной нагрузки влиянием изгибающих моментов можно пренебречь, так как преобладающее значение имеют нормальные силы. Это имеет место тогда, когда форма стенок оболочки и нагрузка на нее таковы, что возможно равновесие между внешними и внутренними усилиями без появления изгибающих моментов. Теория расчета оболочек, построенная на предположении, что нормальные напряжения, возникающие в оболочке, постоянны по толщине и, следовательно, изгиб оболочки отсутствует, называется безмоментной теорией оболочек . Безмоментная теория хорошо работает, если оболочка не имеет резких переходов и жестких защемлений и, кроме того, не нагружена сосредоточенными силами и моментами. Кроме того, эта теория дает более точные результаты, чем меньше толщина стенки оболочки, т.е. чем ближе к истине предположение о равномерном распределении напряжений по толщине стенки.

При наличии сосредоточенных сил и моментов, резких переходов и защемлений сильно усложняется решение задачи. В местах крепления оболочки и в местах резких изменений формы возникают повышенные напряжения, обусловленные влиянием изгибающих моментов. В этом случае применяется так называемая моментная теория расчета оболочек . Следует отметить, что вопросы общей теории оболочек выходят далеко за рамки сопротивления материалов и изучается в специальных разделах строительной механики. В настоящем пособии при расчете тонкостенных сосудов рассматривается безмоментная теория для случаев, когда задача определения напряжений, действующих в меридиональном и окружном сечениях, оказывается статически определимой.

13.2. Определение напряжений в симметричных оболочках по безмоментной теории. Вывод уравнения Лапласа

Рассмотрим осесимметричную тонкостенную оболочку, испытывающую внутреннее давление от веса жидкости (Рис.13.1,а). Двумя меридиональными и двумя окружными сечениями выделим из стенки оболочки бесконечно малый элемент и рассмотрим его равновесие (Рис.13.2).

В меридиональных и окружных сечениях касательные напряжения отсутствуют ввиду симметрии нагрузки и осутствия взаимных сдвигов сечений. Следовательно, на выделенный элемент будут действовать только главные нормальные напряжения: меридиональное напряжение
иокружное напряжение . На основании безмоментной теории будем считать, что по толщине стенки напряжения
ираспределены равномерно. Кроме того, все размеры оболочки будем относить к срединной поверхности ее стенок.

Срединная поверхность оболочки представляет собой поверхность двоякой кривизны. Радиус кривизны меридиана в рассматриваемой точки обозначим
, радиус кривизны срединной поверхности в окружном направлении обозначим. По граням элемента действуют силы
и
. На внутреннюю поверхность выделенного элемента действует давление жидкости, равнодействующая которого равна
. Спроектируем приведенные выше силы на нормаль
к поверхности:

Изобразим проекцию элемента на меридиональную плоскость (Рис.13.3) и на основании этого рисунка запишем в выражении (а) первое слагаемое. Второе слагаемое записывается по аналогии.

Заменяя в (а) синус его аргументом ввиду малости угла и разделив все члены уравнения (а) на
, получим:

(б).

Учитывая, что кривизны меридионального и окружного сечений элемента равны соответственно
и
, и подставляя эти выражения в (б) находим:

. (13.1)

Выражение (13.1) представляет собой уравнения Лапласа, названного так в честь французского ученого, который получил его в начале XIXвека при изучении поверхностного натяжения в жидкостях.

В уравнение (13.1) входят два неизвестных напряжения и
. Меридиональное напряжение
найдем, составив уравнение равновесия на ось
сил, действующих на отсеченную часть оболочки (Рис.12.1,б). Площадь окружного сечения стенок оболочки посчитаем по формуле
. Напряжения
ввиду симметрии самой оболочки и нагрузки относительнго оси
распределены по площади равномерно. Следовательно,

, (13.2)

где вес части сосуда и жидкости, лежащих ниже рассматриваемого сечения;давление жидкости, по закону Паскаля одинаковое во всех направлениях и равное, гдеглубина рассматриваемого сечения, авес единицы объема жидкости. Если жидкость хранится в сосуде под некоторым избыточным в сравнении с атмосферным давлением, то в этом случае
.

Теперь, зная напряжение
из уравнения Лапласа (13.1) можно найти напряжение.

При решении практических задач ввиду того, что оболочка тонкая, можно вместо радиусов срединной поверхности
иподставлять радиусы наружной и внутренней поверхностей.

Как уже отмечалось окружные и меридиональные напряжения и
являются главными напряжениями. Что касается третьего главного напряжения, направление которого нормально к поверхности сосуда, то на одной из поверхностей оболочки (наружной или внутреннейв зависимости от того, с какой стороны действует давление на оболочку) оно равно, а на противоположной – нулю. В тонкостенных оболочках напряженияи
всегда значительно больше. Это означает, что величиной третьего главного напряжения можно пренебречь по сравнению си
, т.е. считать его равным нулю.

Таким образом, будем считать, что материал оболочки находится в плоском напряженном состоянии. В этом случае для оценки прочности в зависимости от состояния материала следует пользоваться соответствующей теорией прочности. Например, применив четвертую (энергетическую) теорию, условие прочности запишем в виде:

Рассмотрим несколько примеров расчета безмоментнтых оболочек.

Пример 13.1. Сферический сосуд находится под действием равномерного внутреннего давления газа(Рис.13.4). Определить напряжения действущие в стенке сосуда и оценить прочность сосуда с использованием третьей теории прочности. Собственным весом стенок сосуда и весом газа пренебрегаем.

1. Ввиду круговой симметрии оболочки и осесимметричности нагрузки напряжения и
одинаковы во всех точках оболочки. Полагая в (13.1)
,
, а
, получаем:

. (13.4)

2. Выполняем проверку по третьей теории прочности:

.

Учитывая, что
,
,
, условие прочности принимае вид:

. (13.5)

Пример 13.2. Цилиндрическая оболочка находится под действием равномерного внутреннего давления газа(Рис.13.5). Определить окружные и меридиональные напряжения, действующие в стенке сосуда, и оценить его прочность с использованием четвертой теории прочности. Собственным весом стенок сосуда и весом газа пренебречь.

1. Меридианами в цилиндрической части оболочки являются образующие, для которых
. Из уравнения Лапласа (13.1) находим окружное напряжение:

. (13.6)

2. По формуле (13.2) находим меридиональное напряжение, полагая
и
:

. (13.7)

3. Для оценки прочности принимаем:
;
;
. Условие прочности по четвертой теории имеет вид (13.3). Подставляя в это условие выражения для окружных и меридиональных напряжений (а) и (б), получаем

Пример 12.3. Цилиндрический резервуар с коническим днищем находится под действием веса жидкости (Рис.13.6,б). Установить законы изменения окружных и меридиональных напряжений в пределах конической и цилиндрической части резервуара, найти максимальные напряженияи
и построить эпюры распределения напряжений по высоте резервуара. Весом стенок резервуара пренебречь.

1. Находим давление жидкости на глубине
:

. (а)

2. Определяем окружные напряжения из уравнения Лапласа, учитывая, что радиус кривизны меридианов (образующих)
:

. (б)

Для конической части оболочки

;
. (в)

Подставляя (в) в (б) получим закон изменения окружных напряжений в пределах конической части резервуара:

. (13.9)

Для цилиндрической части, где
закон распределения окружных напряжений имеет вид:

. (13.10)

Эпюра показана на рис.13.6,а. Для конической части эта эпюра параболическая. Ее математический максимум имеет место в середине общей высоты при
. При
он имеет условное значение, при
максимум напряжений попадает в пределы конической части и имеет реальное значение:

. (13.11)

3. Определяем меридиональные напряжения
. Для конической части вес жидкости в объме конуса высотойравен:

. (г)

Подставляя (а), (в) и (г) в формулу для меридиональных напряжений (13.2) , получим:

. (13.12)

Эпюра
показана на рис.13.6,в. Максимум эпюры
, очерченной для конической части также по параболе, имеет место при
. Реальное значение он имеет при
, когда попадает в пределы конической части. Максимальные меридиональные напряжения при этом равны:

. (13.13)

В цилиндрической части напряжение
по высоте не меняется и равно напряжению у верхней кромки в месте подвеса резервуара:

. (13.14)

В местах, где поверхность резервуара имеет резкий излом, как, например, в месте перехода от цилиндрической части к конической (Рис.13.7) (Рис.13.5), радиальная составляющая меридиональных напряжений
не уравновешена (Рис.13.7).

Эта составляющая по периметру кольца создает радиальную распределенную нагрузку интенсивностью
, стремящуюся согнуть кромки цилиндрической оболочки внутрь. Для устранения этого изгиба ставится ребро жесткости (распорное кольцо) в виде уголка или швеллера, опоясывающего оболочку в месте перелома. Это кольцо воспринимает радиальную нагрузку(Рис.13.8,а).

Вырежем двумя бесконечно близко расположенными радиальными сечениями из распорного кольца его часть (Рис.13.8,б) и определим внутренние усилия, которые в нем возникают. В силу симметрии самого распорного кольца и нагрузки, распределенной по его контуру, поперечная сила и изгибающий момент в кольце не возникают. Остается только продольная сила
. Найдем ее.

Составим сумму проекций всех сил, действующих на вырезанный элемент распорного кольца, на ось :

. (а)

Заменим синус угла углом ввиду его малости
и подставим в (а). Получим:

,

(13.15)

Таким образом, распорное кольцо работает на сжатие. Условие прочности принимает вид:

, (13.16)

где радиус срединной линии кольца;площадь поперечного сечения кольца.

Иногда вместо распорного кольца создают местное утолщение оболочки, загибая края днища резервуара внутрь обечайки.

Если оболочка испытывает внешнее давление, то меридиональные напряжения будут сжимающими и радиальное усилие станет отрицательным, т.е. направленным наружу. Тогда кольцо жесткости будет работать не на сжатие, а на растяжение. При этом условие прочности (13.16) останется таким же.

Следует отметить, что постановка кольца жесткости полностью не устраняет изгиба стенок оболочки, так как кольцо жесткости стесняет расширение колец оболочки, примыкающих к ребру. В результате образующие оболочки вблизи кольца жесткости искривляются. Явление это носит название краевого эффекта. Оно может привести к значительному местному возрастанию напряжений в стенке оболочки. Общая теория учета краевого эффекта рассматривается в специальных курсах с помощью моментной теории расчета оболочек.

Задание 2. Гидростатика

Вариант 0

Тонкостенный сосуд, состоящий из двух цилиндров диаметрами D и d, нижним открытым концом опущен под уровень жидкости Ж в резервуаре А и покоится на опорах С, расположенных на высоте b над этим уровнем. Определить силу, воспринимаемую опорами, если в сосуде создан вакуум, обусловивший поднятие жидкости Ж в нем на высоту (а + b). Масса сосуда равна m. Как влияет на эту силу изменение диаметра d? Численные значения указанных величин приведены в таблице 2.0.

Таблица 2.0

Жидкость Ж

Вода пресная

Дизельное топливо

Нефть тяжелая

Масло АМГ-10

Трансформа-торное

Веретенное

Турбинное

Нефть легкая

Вариант 1

Цилиндрический сосуд, имеющий диаметр D и наполненный жидкостью до высоты а, висит без трения на плунжере диаметром d (рис.2.1). Определить вакуум V, обеспечивающий равновесие сосуда, если его масса с крышками m. Как влияют на полученный результат диаметр плунжера и глубина его погружения в жидкость? Рассчитать силы в болтовых соединениях В и С сосуда. Масса каждой крышки 0,2 m. Численные значения указанных величин приведены в таблице 2.1.

Таблица 2.1

Жидкость

Нефть легкая

Дизельное топливо

Нефть тяжелая

Масло АМГ-10

Трансформаторное

Веретенное

Турбинное

Индустриальное 20

Вариант 2

Закрытый резервуар разделен на две части плоской перегородкой, имеющей на глубине h квадратное отверстие со стороной а, закрытое крышкой (рис. 2.2). Давление над жидкостью в левой части резервуара определяется показанием манометра р М, давление воздуха в правой части – показанием вакуумметра р V . Определить величину силы гидростатического давления на крышку. Численные значения указанных величин приведены в таблице 2.2.

Таблица 2.2

Жидкость

Дизельное топливо

Нефть легкая

Нефть тяжелая

Масло АМГ-10

Турбинное

Веретенное

Трансформаторное

Индустриальное 12

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...