Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Естественная радиоактивность была открыта. Радиоактивность - это что за явление? Виды радиоактивности

Радиоактивность была открыта в 1896 году французским физиком А. Беккерелем. Он занимался исследованием связи люминесценции и недавно открытых рентгеновских лучей.

Беккерелю пришла в голову мысль: не сопровождается ли всякая люминесценция рентгеновскими лучами? Для проверки своей догадки он взял несколько соединений, в том числе одну из солей урана, фосфоресцирующую жёлто-зелёным светом. Осветив её солнечным светом, он завернул соль в чёрную бумагу и положил в тёмном шкафу на фотопластинку, тоже завёрнутую в чёрную бумагу. Через некоторое время, проявив пластинку, Беккерель действительно увидел изображение куска соли. Но люминесцентное излучение не могло пройти через чёрную бумагу, и только рентгеновские лучи могли в этих условиях засветить пластинку. Беккерель повторил опыт несколько раз и с одинаковым успехом. В конце февраля 1896 г. на заседании Французской академии наук он сделал сообщение о рентгеновском излучении фосфоресцирующих веществ.

Через некоторое время в лаборатории Беккереля была случайно проявлена пластинка, на которой лежала урановая соль, не облучённая солнечным светом. Она, естественно, не фосфоресцировала, но отпечаток на пластинке получился. Тогда Беккерель стал испытывать разные соединения и минералы урана (в том числе не проявляющие фосфоресценции), а также металлический уран. Пластинка неизменно засвечивалась. Поместив между солью и пластинкой металлический крестик, Беккерель получил слабые контуры крестика на пластинке. Тогда стало ясно, что открыты новые лучи, проходящие сквозь непрозрачные предметы, но не являющиеся рентгеновскими.

Беккерель установил, что интенсивность излучения определяется только количеством урана в препарате и совершенно не зависит от того, в какие соединения он входит. Таким образом, это свойство было присуще не соединениям, а химическому элементу -- урану.

Своим открытием Беккерель делится с учёными, с которыми он сотрудничал. В 1898 г. Мария Кюри и Пьер Кюри обнаружили радиоактивность тория, позднее ими были открыты радиоактивные элементы полоний и радий.

Они выяснили, что свойством естественной радиоактивности обладают все соединения урана и в наибольшей степени сам уран. Беккерель же вернулся к интересующим его люминофорам. Правда, он сделал ещё одно крупное открытие, относящееся к радиоактивности. Однажды для публичной лекции Беккерелю понадобилось радиоактивное вещество, он взял его у супругов Кюри и положил пробирку в жилетный карман. Прочтя лекцию, он вернул радиоактивный препарат владельцам, а на следующий день обнаружил на теле под жилетным карманом покраснение кожи в форме пробирки. Беккерель рассказал об этом Пьеру Кюри, и тот поставил на себе опыт: в течение десяти часов носил привязанную к предплечью пробирку с радием. Через несколько дней у него тоже появилось покраснение, перешедшее затем в тяжелейшую язву, от которой он страдал в течение двух месяцев. Так впервые было открыто биологическое действие радиоактивности.

Но и после этого супруги Кюри мужественно делали своё дело. Достаточно сказать, что Мария Кюри умерла от лучевой болезни (дожив, тем не менее, до 66 лет).

В 1955 г. были обследованы записные книжки Марии Кюри. Они до сих пор излучают, благодаря радиоактивному загрязнению, внесённому при их заполнении. На одном из листков сохранился радиоактивный отпечаток пальца Пьера Кюри.

Понятие радиоактивности и типы излучений.

Радиоактивность - способность некоторых атомных ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием различных видов радиоактивных излучений и элементарных частиц. Радиоактивность подразделяют на естественную (наблюдается у неустойчивых изотопов, существующих в природе) и искусственную (наблюдается у изотопов, полученных посредством ядерных реакций).

Радиоактивное излучение разделяют на три типа:

  • -излучение - отклоняется электрическим и магнитными полями, обладает высокой ионизирующей способностью и малой проникающей способностью; представляет собой поток ядер гелия; заряд -частицы равен +2е, а масса совпадает с массой ядра изотопа гелия 42Не.
  • -излучение - отклоняется электрическим и магнитным полями; его ионизирующая способность значительно меньше (приблизительно на два порядка), а проникающая способность гораздо больше, чем у -частиц; представляет собой поток быстрых электронов.
  • -излучение - не отклоняется электрическим и магнитными полями, обладает относительно слабой ионизирующей способностью и очень большой проникающей способностью; представляет собой коротковолновое электромагнитное излучение с чрезвычайно малой длиной волны

Период полураспада Т1/2 - время, за которое исходное число радиоактивных ядер в среднем уменьшается вдвое.

Альфа излучение - поток положительно заряженных частиц, образованная 2 протонами и 2 нейтронами. Частица идентична ядру атома гелия-4 (4He2+). Образуется при альфа-распаде ядер. Впервые альфа-излучение открыл Э. Резерфорд. Изучая радиоактивные элементы, в частности изучая такие радиоактивные элементы как уран радий и актиний, Э. Резерфорд пришел к выводу что все радиоактивные элементы испускают альфа- и бета-лучи. И, что еще более важно, радиоактивность любого радиоактивного элемента через определенный конкретный период времени уменьшается. Источником альфа-излучения являются радиоактивные элементы. В отличие от других видов ионизирующего излучения альфа-излучение является наиболее безобидным. Оно опасно лишь при попадании в организм такого вещества (вдыхание, съедание, выпивание, втирание и т.д.), так как пробег альфа частицы, например с энергией 5 МэВ, в воздухе составляет 3,7 см, а в биологической ткани 0,05 мм. Альфа-излучение попавшего в организм радионуклида наносит поистине кошмарные разрушения, т.к. коэффициент качества альфа излучения с энергией меньше 10 МэВ равен 20мм. а потери энергии происходят в очень тонком слое биологической ткани. Оно практически сжигает его. При поглощении альфа-частиц живыми организмами могут возникнуть мутагенные (факторы, вызывающий мутацию), канцерогенные (вещества или физический агент (излучение), способные вызвать развитие злокачественных новообразований) и другие отрицательные эффекты. Проникающая способность А.-и. невелика т.к. задерживается листом бумаги.

Бета-частица (в-частица), заряженная частица, испускаемая в результате бета-распада. Поток бета-частиц называется бета-лучи или бета-излучение.

Отрицательно заряженные бета-частицы являются электронами (в--), положительно заряженные -- позитронами (в+).

Энергии бета-частиц распределены непрерывно от нуля до некоторой максимальной энергии, зависящей от распадающегося изотопа; эта максимальная энергия лежит в диапазоне от 2,5 кэВ (для рения-187) до десятков МэВ (для короткоживущих ядер, далёких от линии бета-стабильности).

Бета-лучи под действием электрического и магнитного полей отклоняются от прямолинейного направления. Скорость частиц в бета-лучах близка к скорости света. Бета-лучи способны ионизировать газы, вызывать химические реакции, люминесценцию, действовать на фотопластинки.

Значительные дозы внешнего бета-излучения могут вызвать лучевые ожоги кожи и привести к лучевой болезни. Ещё более опасно внутреннее облучение от бета-активных радионуклидов, попавших внутрь организма. Бета-излучение имеет значительно меньшую проникающую способность, чем гамма-излучение (однако на порядок большую, чем альфа-излучение). Слой любого вещества с поверхностной плотностью порядка 1 г/см2.

Например, несколько миллиметров алюминия или несколько метров воздуха практически полностью поглощает бета-частицы с энергией около 1 МэВ.

Гамма - излучение вид электромагнитного излучения с чрезвычайно маленькой длиной волны -- < 5Ч10-3 нм и вследствие этого ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. Гамма-квантами являются фотоны высокой энергии. Обычно считается, что энергии квантов гамма-излучения превышают 105 эВ, хотя резкая граница между гамма- и рентгеновским излучением не определена. На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1-100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению, если при взаимодействиях электронов или при переходах в атомной электронной оболочке -- то к рентгеновскому излучению. Очевидно, физически кванты электромагнитного излучения с одинаковой энергией не отличаются, поэтому такое разделение условно.

Гамма-излучение испускается при переходах между возбуждёнными состояниями атомных ядер (энергии таких гамма-квантов лежат в диапазоне от ~1 кэВ до десятков МэВ). При ядерных реакциях (например, при аннигиляции электрона и позитрона, распаде нейтрального пиона и т.д.), а также при отклонении энергичных заряженных частиц в магнитных и электрических полях.

Гамма-лучи в отличие от б-лучей и в-лучей не отклоняются электрическими и магнитными полями и характеризуются большей проникающей способностью при равных энергиях и прочих равных условиях. Гамма-кванты вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество:

Фотоэффект (гамма-квант поглощается электроном атомной оболочки, передавая ему всю энергию и ионизируя атом).

Комптоновское рассеяние (гамма-квант рассеивается на электроне, передавая ему часть своей энергии).

Рождение электрон-позитронных пар (в поле ядра гамма-квант с энергией не ниже 2mec2=1,022 МэВ превращается в электрон и позитрон).

Фотоядерные процессы (при энергиях выше нескольких десятков МэВ гамма-квант способен выбивать нуклоны из ядра).

Гамма-кванты, как и любые другие фотоны, могут быть поляризованы.

Облучение гамма-квантами, в зависимости от дозы и продолжительности, может вызвать хроническую и острую лучевую болезнь. Стохастические эффекты облучения включают различные виды онкологических заболеваний. В то же время гамма-облучение подавляет рост раковых и других быстро делящихся клеток. Гамма-излучение является мутагенным и тератогенным фактором.

Защитой от гамма-излучения может служить слой вещества. Эффективность защиты (то есть вероятность поглощения гамма-кванта при прохождении через неё) увеличивается при увеличении толщины слоя, плотности вещества и содержания в нём тяжёлых ядер (свинца, вольфрама, обеднённого урана и пр.).

Единицей измерения радиоактивности служит беккерель (Бк, Bq). Один беккерель равен одному распаду в секунду. Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или его объема (Бк/л, Бк/куб.м). Часто используют внесистемную единицу - кюри (Ки, Ci). Один кюри соответствует числу распадов в секунду в 1 грамме радия. 1 Ки = 3,7.1010 Бк.

Соотношения между единицами измерения приведены ниже в таблице.

Широко известная внесистемная единица рентген (Р, R) служит для определения экспозиционной дозы. Один рентген соответствует дозе рентгеновского или гамма-излучения, при которой в 1 см3 воздуха образуется 2.109 пар ионов. 1 Р = 2, 58.10-4 Кл/кг.

Чтобы оценить действие излучения на вещество, измеряют поглощенную дозу, которая определяется как поглощенная энергия на единицу массы. Единица поглощенной дозы называется рад. Один рад равен 100 эрг/г. В системе СИ используют другую единицу - грей (Гр, Gy). 1 Гр = 100 рад = 1 Дж/кг.

Биологический эффект различных видов излучения неодинаков. Это связано с отличиями в их проникающей способности и характере передачи энергии органам и тканям живого организма. Поэтому для оценки биологических последствий используют биологический эквивалент рентгена - бэр. Доза в бэрах эквивалентна дозе в радах, умноженной на коэффициент качества излучения. Для рентгеновских, бета- и гамма-лучей коэффициент качества считается равным единице, то есть бэр соответствует раду. Для альфа-частиц коэффициент качества равен 20 (это означает, что альфа-частицы вызывают в 20 раз более сильное повреждение живой ткани, чем та же поглощенная доза бета- или гамма-лучей). Для нейтронов коэффициент составляет от 5 до 20 в зависимости от энергии. В системе СИ для эквивалентной дозы введена специальная единица, называемая зиверт (Зв, Sv). 1 Зв = 100 бэр. Эквивалентная доза в зивертах соответствует поглощенной дозе в греях, умноженной на коэффициент качества.

Кто открыл радиоактивность и совершил столь значимое открытие в науке, Вы узнаете из этой статьи.

Кто открыл радиоактивность?

Официальной наукой считается, что супруги и открыли радиоактивность. Но данное явление перед супругами было случайно открыто несколькими учеными ранее.

Впервые явление радиоактивности открыл фотограф Абель Ньепс де Сен-Виктор, причем совершенно случайно в 1857 году, когда совершил попытку получить цветные снимки. Проводя эксперименты с солями металлов, он сделал открытие, что некоторые соли в темноте оставляют на фотобумаге отпечатки. Ими были соли урана, которые служили невидимым источником излучения радиоактивности. Но она считалась опасной для человека, поэтому на время о ней забыли.

Французский физик Антуан Беккерель занимался исследованием фосфоресцентных минералов, которые после пребывания на солнце некоторое время светятся. До этого он изучал рентгеновские излучения и считал, что они связаны между собой. С целью проверки данного предположения, Беккерель экспериментировал с солями урана, которые подтвердили его гипотезу. Так им была обнаружена радиоактивность в 1896.

Однако термин «радиоактивность» придумал и ввел в научный оборот вовсе не он, а Мари Склодовская-Кюри . Она вместе со своим супругом Пьером занималась исследованием данного явления.

Французский физик А.Баккрель 1 марта 1896 года обнаружил по почернению фотопластинки испускание солью урана невидимых лучей сильной проникающей способности. Вскоре он выяснил, что свойством лучеиспускания обладает и сам уран. Затем такое свойство им было обнаружено и у тория. Радиоактивность (от латинского radio – излучаю, radus – луч и activus – действенный), такое название получило открытое явление, которое оказалось привилегией самых тяжелых элементов периодической системы Д.И.Менделеева.

Есть несколько определений этого замечательного явления одно из которых дает такую ее формулировку: «Радиоактивность – это самопроизвольное (спонтанное) превращение неустойчивого изотопа химического элемента в другой изотоп (обычно изотоп другого элемента); при этом происходит испускание электронов, протонов, нейтронов или ядер гелия (ά-частиц)» Сущностью открытого явления было в самопроизвольном изменении состава атомного ядра, находящегося в основном состоянии либо в возбужденном долгоживущем состоянии.

В 1898 году другие французские ученые Мария Склодовская-Кюри и Пьер Кюри выделили из уранового минерала два новых вещества, радиоактивных в гораздо большей степени, чем уран и торий Так были открыты два неизвестных ранее радиоактивных элемента - полоний и радий, а Мария, кроме того обнаруживает (независимо от немецкого физика Г.Шмидта) явление радиоактивности у тория. Кстати, она первой и предложила термин радиоактивность . Ученые пришли к выводу, что радиоактивность представляет собой самопроизвольный процесс, происходящий в атомах радиоактивных элементов. Теперь это явление определяют как самопроизвольное превращение неустойчивого изотопа одного химического элеента в изотоп другого элемента и при этом происходит испускание электронов, протонов, нейтронов или ядер гелия α – частиц. Здесь следует отметить, что среди элементов, содержащихся в земной коре, радиоактивными являются все с порядковыми номерами более 83, т.е. расположенными в таблице Менделеева после висмута. За 10 лет совместной работы они сделали очень многое для изучения явления радиоактивности. Это был беззаветный труд во имя науки – в плохо оборудованной лаборатории и при отсутствии необходимых средств. Пьер установил самопроизвольное выделение тепла солями радия. Этот препарат радия исследователи получили в 1902 году в количестве 0,1 гр. Для этого им потребовалось 45 месяцев напряженного туда и более 10000 химических операций освобождения и кристаллизации. В 1903 году за открытие в области радиоактивности супругам Кюри и А.Беккерею была присуждена Нобелевская премия по физике. Всего за работы, связанные с исследованием и применением радиоактивности, было присуждено более 10 Нобелевских премий по физике и химии (А.Беккерею, П. и М. Кюри, Э.Ферми, Э.Резерфорду, Ф. и И. Жолио-Кюри, Д.Хэвиши, О.Гану, Э.Макмиланн и Г.Сиборгу, У.Либби и др.). В честь супругов Кюри получил свое название искусственно полученный трансурановый элемент с порядковым номером 96 – кюрий.

В 1898 году английский ученый Э.Резерфорд приступил к изучению явления радиоактивности. В 1903 году Э.Резерфорд доказывает ошибочность предположения английского физика Д.Томпсона о его теории строении атома и в 1908-1911 г.г. проводит опыты по рассеянию α – частиц (ядер гелия) металлической фольгой. α – частица проходила сквозь тонкую фольгу (толщиной 1 мкм) и, попадая на экран из сернистого цинка, порождала вспышку, хорошо наблюдаемую в микроскоп. Опыты по рассеянию α – частиц убедительно показали, что почти вся масса атома сосредоточена в очень малом объеме – атомном ядре, диаметр которого примерно в 100000 раз меньше диаметра атома. Большинство α – частиц пролетает мимо массивного ядра, не задевая его, но изредка происходит столкновение α – частицы с ядром и тогда она может отскочить назад. Таким образом, первым его фундаментальным открытием в этой области было обнаружение неоднородности излучения, испускаемого ураном. Так в науку о радиоактивности впервые вошло понятие об α – и β - лучах. Он также предложил и названия: α –распад и α – частица. Немного позже была обнаружена еще одна составляющая часть излучения, обозначенная третьей буквой греческого алфавита: γ-лучи. Это произошло вскоре после открытия радиоактивности. На долгие годы α – частицы стали для Э.Резерфорда незаменимым инструментом исследований атомных ядер. В 1903 году он открывает новый радиоактивный элемент – эманацию тория. В 1901-1903 годах он совместно с английским ученым Ф.Содди проводит исследования, которые привели к открытию естественного превращения элеентов(например радия в радон) и разработке теории радиоактивного распада атомов.

В 1903 году немецкий физик К.Фаянс и Ф.Содди независимо друг от друга сформулировали правило смещения, характеризующее перемещение изотопа в периодической системе элементов при различных радиоактивных превращениях.

Весной 1934 года в «Докладах Парижской академии наук» появилась статья под названием «Новый тип радиоактивности». Ее авторы Ирен Жолио-Кюри и ее муж Фредерик Жолио-Кюри обнаружили, что бор, магний, и алюминий, облученные α – частицами, становятся сами радиоактивными и при своем распаде испускают позитроны. Так была открыта искусственная радиоактивность. В результате ядерных реакций (например, при облучении различных элементов α – частицами или нейтронами) образуется радиоактивные изотопы элементов, в природе не существующие. Именно эти искусственные радиоактивные продукты составляют подавляющее большинство среди всех известных ныне изотопов. Во многих случаях продукты радиоактивного распада сами оказываются радиоактивными и, тогда образованию стабильного изотопа предшествует цепочка из нескольких актов радиоактивного распада. Примерами таких цепочек являются ряды периодических изотопов тяжелых элементов, которые начинаются нуклеидами 238 U, 235 U, 232 и заканчиваются стабильными изотопами свинца 206 Pb, 207 Pb, 208 Pb. Так из общего числа известных ныне около 2000 радиоактивных изотопов около 300 – природные, а остальные получены искусственно, в результате ядерных реакций. Между искусственной и естественной радиацией нет принципиального различия. В 1934 г. И. и Ф. Жолио-Кюри в результате изучения искусственной радиации были открыты новые варианты β–распада – испускание позитронов, которые были первоначально предсказаны японскими учеными Х.Юккавой и С.Сакатой. И. и Ф. Жолио-Кюри осуществили ядерную реакцию, продуктом которой был радиоактивный изотоп фосфора с массовым числом 30. Выяснилось, что он испускал позитрон . Этот тип радиоактивных превращений называют β + распадом (подразумевая под β - распадом испускание электрона).

Один из выдающихся ученых современности Э.Ферми, свои главные работы посвятил исследованиям, связанным с искусственной радиоактивностью. Созданная им в 1934 году теория бетта-распада и в настоящее время используется физиками для познания мира элементарных частиц.

Теоретики уже давно предсказывают возможность двойного β - превращения в 2 β - распада, при которой одновременно испускаются два электрона или два позитрона, однако на практике этот путь «гибели» радиоактивного ядра пока не обнаружен. Зато сравнительно недавно удалось наблюдать очень редкое явление протонной радиоактивности – испускание ядром протона и доказано существование двупротонной радиоактивности, предсказанное ученым В.И.Гольданским. Всем этим видам радиоактивных превращений подтверждены только искусственные радиоизотопы, и в природе они не встречаются.

В последствии целым рядом ученых разных стран (Дж.Данинг, В.А.Карнаухов, Г.Н.Флеров, И.В.Курчатов и др.) были обнаружены сложные, включающие β–распад, превращения, в том числе испускание запаздывающих нейтронов.

Одним из первых ученых в бывшем СССР, который приступил к изучению физики атомных ядер вообще и радиоактивности в частности был академик И.В.Курчатов. В 1934 году он открыл явление разветвления ядерных реакций, вызываемых нейтронной бомбардировкой и исследовал искусственную радиоактивность. ряда химических элементов. В 1935 году при облучении брома потоками нейтронов Курчатов и его сотрудники заметили, что возникающие при этом радиоактивные атомы брома распадаются с двумя различными скоростями. Такие атомы назвали изомерами, а открытое учеными явление изомерией.

Наукой было установлено, что быстрые нейтроны способны разрушать ядра урана. При этом выделяется много энергии и образуются новые нейтроны, способные продолжать процесс деления ядер урана. Позднее обнаружилось, что атомные ядра урана могут делиться и без помощи нейтронов. Так было установлено самопроизвольное (спонтанное) деление урана. В честь выдающегося ученого в области ядерной физики и радиоактивности 104-й элемент периодической системы Менделеева назван курчатовием.

Открытие радиоактивности оказало огромное влияние на развитие науки и техники, Оно ознаменовало начало эпохи интенсивного изучения свойств и структуры веществ. Новые перспективы, возникшие в энергетике, промышленности, военной области медицине и других областях человеческой деятельности благодаря овладению ядерной энергией, были вызваны к жизни обнаружением способности химических элементов к самопроизвольным превращениям. Однако, наряду с положительными факторами использования свойств радиоактивности в интересах человечества можно привести примеры и негативного их вмешательства в нашу жизнь. К числу таких можно относится ядерное оружие во всех его формах, затонувшие корабли и подводные лодки с атомными двигателями и атомным оружием, захоронение радиоактивных отходах в море и на земле, аварии на атомных электростанциях и др. а непосредственно для Украины использование радиоактивности в атомной энергетике привело к Чернобыльской трагедии.

Р Е Ф Е Р А Т

на тему: О Т К Р Ы Т И Е

На границе двух последних веков произошло событие, изменившее судьбу человечества.
Французский физик Антуан Беккерель в одном из своих опытов завернул кристаллы сульфата уранил-калия K 2 (UO 2)(SO 4) 2 в черную светонепроницаемую бумагу и положил сверток на фотопластинку. После проявления он обнаружил на ней очертания кристаллов. Так была открыта естественная радиоактивность соединений урана.

Наблюдения Беккереля заинтересовали французский ученых, физика и химика Мари Склодовскую-Кюри и ее супруга физика Пьера Кюри. Они занялись поисками новых радиоактивных химических элементов в минералах урана. Найденные ими в 1898 году полоний Po и радий Ra оказались продуктами распада атомов урана. Это была уже настоящая революция в химии, так как до этого атомы считались неделимыми, а химические элементы - вечными и неразрушимыми.

В ХХ веке в химии произошло много интересных открытий. Вот только небольшая часть из них. С 1940 по 1988 гг. было синтезировано 20 новых химических элементов, не найденных в природе, в том числе технеций Tc и астат At. Удалось получить элементы, находящиеся в Периодической системе после урана, от нептуния Np с атомным номером 93 до элемента, не имеющего до сих пор общепризнанного названия, с атомным номером 114.

Происходит постепенное слияние неорганической и органической химии и образованием на их основе химии металлоорганических соединений, бионеорганической химии, химии кремния и бора, химии комплексных соединений. Начало этому процессу положил датский химик-органик Вильям Цейзе, синтезировавший в 1827 году необычное соединение трихлороэтиленплатинат(II) калия K. Только в 1956 году удалось установить характер химических связей в этом соединении.

Во второй половине XX века удалось получить искусственным путем такие очень сложные природные вещества, как хлорофилл и инсулин. Были также синтезированы соединения благородных газов от радона Rn до аргона Ar, считавшихся ранее инертными, неспособными к химическому взаимодействию. Положено начало получению топлива из воды и света.

Возможности химии оказались беспредельными, а самые необузданные фантазии человека в области синтеза веществ с необычными свойствами - осуществимыми. Их реализацией и займется молодое поколение химиков первой половины XXI века.

Открытие электрона

Гипотеза о существовании элементарного электрического заряда. Опыты Фарадея показали, что для разных электролитов электрохимический эквивалент k вещества оказывается различным, но, чтобы выделить на электроде один моль любого одновалентного вещества, требуется пропустить один и тот же заряд F , равный примерно 9.6*10­­ 4 Кл. Более точное значение этой величины, называемой постоянной Фарадея, равно F=96485 Кл*моль -1 .

Если 1 моль ионов при пропускании электрического тока через раствор электролита переносит электрический заряд, равный постоянной Фарадея F , то на долю каждого иона приходится электрический заряд, равный

. (12.10)

На основании такого расчета ирландский физик Д. Стоней высказал предположение о существовании внутри атомов элементарных электрических зарядов. В 1891 г. минимальный электрический заряд е он предложил назвать электроном.

Измерение заряда иона. При пропускании через электролит постоянного электрического тока за время t к одному из электродов приходит электрический заряд, равный произведению силы тока I на время t . С другой стороны, этот электрический заряд равен произведению заряда одного иона q 0 на число ионов N :

It = q 0 N . (12.11)

Отсюда получаем

(12.13)

то из выражений (12.12) и (12.13) находим

Таким образом, для экспериментального определения заряда одного иона нужно измерить силу постоянного тока I , проходящего через электролит, время t пропускания тока и массу m вещества, выделившегося у одного из электродов. Необходимо знать также молярную массу вещества M .

Открытие электрона. Установление закона электролиза еще не доказало строго, что в природе существуют элементарные электрические заряды. Можно, например, предположить, что все одновалентные ионы имеют различные электрические заряды, но их среднее значение равно элементарному заряду е .
Для того чтобы выяснить, существует ли в природе элементарный заряд, необходимо было измерить не суммарное количество электричества, переносимое большим числом ионов, а заряды отдельных ионов. Неясным был и вопрос о том, обязательно ли заряд связан с частицами вещества и, если связан, с какими именно.
Важный вклад в решение этих вопросов был сделан в конце XIX в. при исследовании явлений, возникающих при пропускании электрического тока через разреженные газы. В опытах было обнаружено свечение стекла разрядной трубки за анодом. На светлом фоне светящегося стекла была видна тень от анода, как будто бы свечение стекла вызывалось каким-то невидимым излучением, распространяющимся прямолинейно от катода к аноду. Это невидимое излучение назвали катодными лучами.
Французский физик Жан Перрен в 1895 г. установил, что «катодные лучи» в действительности являются потоком отрицательно заряженных частиц.
Исследуя законы движения частиц катодных лучей в электрических и магнитных полях, английский физик Джозеф Томсон (1856-1940) установил, что отношение электрического заряда каждой из частиц к ее массе является величиной, одинаковой для всех частиц. Если предположить, что каждая частица катодных лучей имеет заряд, равный элементарному заряду е , то придется сделать вывод, что масса частицы катодных лучей меньше одной тысячной массы самого легкого из известных атомов - атома водорода.
Далее Томсон установил, что отношение заряда частиц катодных лучей к их массе получается одинаковым при наполнении трубки различными газами и при изготовлении катода из разных металлов. Следовательно, одинаковые частицы входили в состав атомов различных элементов.
На основании результатов своих опытов Томсон сделал вывод, что атомы вещества не являются неделимыми. Из атома любого химического элемента могут быть вырваны отрицательно заряженные частицы с массой, меньшей одной тысячной массы атома водорода. Все эти частицы имеют одинаковую массу и обладают одинаковым электрическим зарядом. Эти частицы называют электронами.

Опыт Милликена. Окончательное доказательство существования элементарного электрического заряда было дано опытами, которые выполнил в 1909- 1912 гг. американский физик Роберт Милликен (1868- 1953). В этих опытах измерялась скорость движения капель масла в однородном электрическом поле между двумя металлическими пластинами. Капля масла, не имеющая электрического заряда из-за сопротивления воздуха падает с некоторой постоянной скоростью. Если на своем пути капля встречается с ионом и приобретает электрический заряд q , то на нее, кроме силы тяжести, действует еще кулоновская сила со стороны электрического поля. В результате изменения силы, вызывающей движение капли, изменяется скорость ее движения. Измеряя скорость движения капли и зная напряженность электрического поля, в котором происходило ее движение, Милликен мог определить заряд капли.
Опыт Милликена был повторен одним из основателей советской физики - Абрамом Федоровичем Иоффе (1880- 1960). В опытах Иоффе для определения элементарного электрического заряда вместо капель масла использовались металлические пылинки. Изменением напряжения между пластинами достигалось равенство кулоновской силы и силы тяжести (рис. 12.2), пылинка в этом случае была неподвижной:

mg=q 1 E 1.

Рисунок 12. 2

При освещении пылинки ультрафиолетовым светом ее заряд изменялся и для уравновешивания силы тяжести нужно было изменить напряженность электрического поля между пластинами:

mg=q 2 E 2.

По измеренным значениям напряженности электрического поля можно было определить отношение электрических зарядов пылинки:

mg = q 1 E 1 = q 2 E 2 = … = q n E n ;

Опыты Милликена и Иоффе показали, что заряды капель и пылинок всегда изменяются скачкообразно. Минимальная «порция» электрического заряда - элементарный электрический заряд, равный

e=1,602*10­­ -19 Кл.

Электрический заряд любого тела всегда целочисленно кратен элементарному электрическому заряду. Других «порций» электрического заряда, способных переходить от одного тела к другому, в природе до сих пор экспериментально обнаружить не удалось. В настоящее время имеются теоретические предсказания о существовании элементарных частиц - кварков - с дробными электрическими зарядами, равными 1/Зе и 2/Зе .


Опыт Беккереля

Открытие естественной радиоактивности – явление, доказывающее сложный состав атомного ядра, произошло благодаря счастливой случайности. Беккерель долгое время исследовал свечение веществ, предварительно облученных солнечным светом. Слушая сообщения об опытах Рентгена на заседании Французской Академии 20 января 1896 года и наблюдая за демонстрацией возникновения рентгеновских лучей в разрядной трубке, Беккерель неотрывно смотрит на зеленоватое светящееся пятно на стекле возле катода. Мысль которая его преследует: может быть, свечение образцов его коллекции тоже сопровождается испусканием рентгеновских лучей? Тогда рентгеновские лучи можно будет получать, не прибегая к помощи разрядной трубки.

Беккерель обдумывает свой эксперимент, выбирает из своей коллекции двойную сернокислую соль урана и калия, кладет соль на фотопластинку, спрятанную от света в черную бумагу, и выставляет пластинку с солью на солнце.

После проявления фотопластинка почернела на тех участках, где лежала соль. Следовательно, уран создавал какое - то излучение, которое пронизывает непрозрачные тела и действует на фотопластинку. Беккерель думал, что это излучение возникает под влиянием солнечных лучей. Но однажды, в феврале 1896г., провести ему очередной опыт не удалось из-за облачной погоды. Беккерель убрал пластинку в ящик стола, положив на нее сверху медный крест, покрытый солью урана. Проявив на всякий случай пластинку два дня спустя, он обнаружил на ней почернение в форме отчетливой тени креста. Это означало, что соли урана самопроизвольно, без каких-либо внешних влияний создают какое-то излучение. Начались интенсивные исследования.

Вскоре Беккерель установил важный факт: интенсивность излучения определяется только количеством урана в препарате, и не зависит от того в какие соединения он входит. Следовательно, излучение присуще не соединениям, а химическому элементу урану, его атомам.

Способность урана испускать лучи не ослабевали месяцами. 18 мая 1896 года Беккерель со всей определенностью констатировал наличие этой способности у урановых соединений и описал свойства излучения. Но чистый уран оказался в распоряжении Беккереля только осенью, и 23 ноября 1896 года Беккерель сообщил о свойстве урана испускать невидимые урановые лучи вне зависимости от его химического и физического состояния.

Исследования Кюри.

В 1878 году Пьер Кюри стал демонстратором в физической лаборатории Сорбонны, где занялся исследованием природы кристаллов. Вместе со своим старшим братом Жаком, работавшим в минералогической лаборатории университета, Пьер в течение четырех лет проводил интенсивные экспериментальные работы в этой области. Братья Кюри открыли пьезоэлектричество – появление под действием приложенной извне силы на поверхности некоторых кристаллов электрических зарядов. Ими был открыт и обратный эффект: те же кристаллы под действием электрического поля испытывают сжатие.

Если приложить к таким кристаллам переменный ток, то их можно заставить совершать колебания с ультравысокими частотами, при которых кристаллы будут испускать звуковые волны за пределами восприятия человеческого слуха. Такие кристаллы стали очень важными компонентами такой радиоаппаратуры, как микрофоны, усилители и стереосистемы.

Братья Кюри разработали и построили такой лабораторный прибор, как пьезоэлектрический кварцевый балансир, который создает электрический заряд, пропорциональный приложенной силе. Его можно считать предшественником основных узлов и модулей современных кварцевых часов и радиопередатчиков. В 1882 г. по рекомендации английского физика Уильяма Томсона Кюри был назначен руководителем лаборатории новой Муниципальной школы промышленной физики и химии. Хотя жалованье в школе было более чем скромным, Кюри оставался главой лаборатории в течение двадцати двух лет. Через год после назначения Пьера Кюри руководителем лаборатории сотрудничество братьев прекратилось, так как Жак покинул Париж, чтобы стать профессором минералогии университета Монпелье.

В период с 1883 по 1895 годов П. Кюри выполнил большую серию работ, в основном по физике кристаллов. Его статьи по геометрической симметрии кристаллов и поныне не утратили своего значения для кристаллографов. С 1890 по 1895 г. Кюри занимался изучением магнитных свойств веществ при различных температурах. На основании большого числа экспериментальных данных в его докторской диссертации была установлена зависимость между температурой и намагниченностью, впоследствии получившая название закона Кюри.

Работая над диссертацией, Пьер Кюри в 1894 г. встретился с Марией Склодовской, молодой польской студенткой физического факультета Сорбонны. Они поженились 25 июля 1895 года, через несколько месяцев после того, как Кюри защитил докторскую диссертацию. В 1897 году, вскоре после рождения первого ребенка - Ирен, Мария Кюри приступила к исследованиям радиоактивности, которые вскоре поглотили внимание Пьера до конца его жизни.

В 1896 году Анри Беккерель открыл, что урановые соединения постоянно испускают излучение, способное засвечивать фотографическую пластинку. Выбрав это явление темой своей докторской диссертации, Мари стала выяснять, не испускают ли другие соединения «лучи Беккереля». Так как Беккерель обнаружил, что испускаемое ураном излучение повышает электропроводность воздуха вблизи препаратов, она использовала для измерения электропроводности пьезоэлектрический кварцевый балансир братьев Кюри.

Вскоре Мария Кюри пришла к заключению, что только уран, торий и соединения этих двух элементов испускают излучение Беккереля, которое она позднее назвала радиоактивностью. Мария в самом начале своих исследований совершила важное открытие: урановая смоляная обманка (урановая руда) электризует окружающий воздух гораздо сильнее, чем содержащиеся в ней соединения урана и тория, и даже чем чистый уран. Из этого наблюдения она сделала вывод о существовании в урановой смоляной обманке еще неизвестного сильно радиоактивного элемента. В 1898 г. Мария Кюри сообщила о результатах своих экспериментов Французской академии наук. Убежденный в том, что гипотеза его жены не только верна, но и очень важна, Пьер Кюри оставил свои собственные исследования, чтобы помочь Марии выделить неуловимый элемент. С этого времени интересы супругов Кюри как исследователей слились настолько полно, что даже в своих лабораторных записях они всегда употребляли местоимение «мы».

Супруги Кюри поставили перед собой задачу разделить урановую смоляную обманку на химические компоненты. После трудоемких операций они получили небольшое количество вещества, обладавшее наибольшей радиоактивностью. Оказалось, что выделенная порция содержит не один, а два неизвестных радиоактивных элемента. В июле 1898 г. Пьер и Мария Кюри опубликовали статью «О радиоактивном веществе, содержащемся в урановой смоляной обманке», в которой сообщали об открытии одного из элементов, названным полонием в честь родины Марии Склодовской Польши.

В декабре они объявили об открытии второго элемента, который назвали радием. Оба новых элемента были во много раз более радиоактивны, чем уран или торий, и составляли одну миллионную часть урановой смоляной обманки. Чтобы выделить из руды радий в достаточном для определения его атомного веса количестве, Кюри в последующие четыре года переработали несколько тонн урановой смоляной обманки. Работая в примитивных и вредных условиях, они производили операции химического разделения в огромных чанах, установленных в дырявом сарае, а все анализы – в крохотной, бедно оснащенной лаборатории Муниципальной школы.

В сентябре 1902 года супруги Кюри сообщили о том, что им удалось выделить одну десятую грамма хлорида радия и определить атомную массу радия, которая оказалась равной 225. (Выделить полоний Кюри не удалось, так как он оказался продуктом распада радия.) Соль радия испускала голубоватое свечение и тепло. Это фантастически выглядевшее вещество привлекло к себе внимание всего мира. Признание и награды за его открытие пришли почти сразу.

Кюри опубликовали огромное количество информации о радиоактивности, собранной ими за время исследований: с 1898 по 1904 г. они выпустили тридцать шесть работ. Еще до завершения своих исследований. Кюри побудили других физиков также заняться изучением радиоактивности. В 1903 г. Эрнест Резерфорд и Фредерик Содди высказали предположение о том, что радиоактивные излучения связаны с распадом атомных ядер. Распадаясь (утрачивая какие-то из образующих их частиц), радиоактивные ядра претерпевают трансмутацию в другие элементы. Кюри одними из первых поняли, что радий может применяться и в медицинских целях. Заметив воздействие излучения на живые ткани, они высказали предположение, что препараты радия могут оказаться полезными при лечении опухолевых заболеваний.

Шведская королевская академия наук присудила супругам Кюри половину Нобелевской премии по физике 1903 г. «в знак признания... их совместных исследований явлений радиации, открытых профессором Анри Беккерелем», с которым они разделили премию. Кюри были больны и не смогли присутствовать на церемонии вручения премий. В своей Нобелевской лекции, прочитанной два года спустя, Кюри указал на потенциальную опасность, которую представляют радиоактивные вещества, попади они не в те руки, и добавил, что «принадлежит к числу тех, кто вместе с химиком и бизнесменом Альфредом Нобелем считает, что новые открытия принесут человечеству больше бед, чем добра».

Радий – элемент, встречающийся в природе крайне редко, и цены на него, с учетом его медицинского значения, быстро возросли. Кюри жили бедно, и нехватка средств не могла не сказываться на их исследованиях. Вместе с тем они решительно отказались от патента на свой экстракционный метод, равно как и от перспектив коммерческого использования радия. По их убеждению, это противоречило бы духу науки – свободному обмену знаниями. Несмотря на то, что такой отказ лишил их немалой прибыли, финансовое положение Кюри улучшилось после получения Нобелевской премии и других наград.

В октябре 1904 г. Пьер Кюри был назначен профессором физики Сорбонны, а Мария Кюри – заведующей лабораторией, которой прежде руководил ее муж. В декабре того же года у Кюри родилась вторая дочь, Ева. Возросшие доходы, улучшившееся финансирование исследований, планы создания новой лаборатории, восхищение и признание мирового научного сообщества должны были сделать последующие годы супругов Кюри плодотворными. Но, как и Беккерель, Кюри ушел из жизни слишком рано, не успев насладиться триумфом и свершить задуманное. В дождливый день 19 апреля 1906 г., переходя улицу в Париже, он поскользнулся и упал. Голова его попала под колесо проезжавшего конного экипажа. Смерть наступила мгновенно.

Мария Кюри унаследовала его кафедру в Сорбонне, где продолжила свои исследования радия. В 1910 г. ей удалось выделить чистый металлический радий, а в 1911 г. она была удостоена Нобелевской премии по химии. В 1923 г. Мари опубликовала биографию Кюри. Старшая дочь Кюри, Ирен (Ирен Жолио-Кюри), разделила со своим мужем Нобелевскую премию по химии 1935 г.; младшая, Ева, стала концертирующей пианисткой и биографом своей матери. Серьезный, сдержанный, всецело сосредоточенный на своей работе, Пьер Кюри был вместе с тем добрым и отзывчивым человеком. Он пользовался довольно широкой известностью как натуралист-любитель. Одним из излюбленных его развлечений были пешие или велосипедные прогулки. Несмотря на занятость в лаборатории и семейные заботы, Кюри находили время для совместных прогулок.

Помимо Нобелевской премии, Кюри был удостоен еще нескольких наград и почетных званий, в том числе медали Дэви Лондонского королевского общества (1903) и золотой медали Маттеуччи Национальной Академии наук Италии (1904). Он был избран во Французскую академию наук (1905).

Работы Пьера и Мари Кюри открыли дорогу исследованиям структуры ядер и привели к современным достижениям в освоении ядерной энергии.

В конце 1985 г профессор Вильгельм Конрад Рентген открыл лучи проходящие сквозь дерево, картон и другие предметы, не прозрачные для видимого света. Впоследствии эти лучи получили название рентгеновских лучей.

В 1896 г французский ученый Анри Беккерель открыл явление радиоактивности. На заседании Академии наук он сообщил, что наблюдавшиеся им лучи, проникавшиеся подобно рентгеновским лучам через непрозрачные для света предметы излучаются некоторыми веществами. Так было установлено, что новые лучи излучаются веществами, в состав которых входит уран. Вновь открытые лучи Беккерель назвал урановыми лучами.

Дальнейшая история новооткрытых лучей тесно связано с именами польского физика Марии Склодовской и ее мужа – француза Пьера Кюри, которые подробно изучили эти открытия и назвали их радиоактивностью.

Радиоактивность – это способность ряда химических элементов самопроизвольно распадаться и испускать невидимые излучения.

Затем наукой было установлено, что радиоактивное излучение – это сложное излучение, в состав которого входят лучи трех видов, отличающиеся друг от друга проникающейся способностью.

Альфа-лучи () - проникающая способность этих лучей очень мала. В воздухе они могут пройти путь 2-9 см, в биологической ткани – 0,02-0,06 мм; они полностью поглощаются листом бумаги. Наибольшую опасность для людей представляют при попадании альфа-частиц внутрь организма с продуктами питания, водой и воздухом (практически с организма не выводятся). Альфа-частицы- это положительно заряженные ядра гелия. Альфа-распад характерен для тяжелых элементов (урана; плутония, тория и др.).
Бета-лучи () – проникающая способность этих лучей значительно больше, чем у альфа частиц. Бета-частицы могут пройти в воздухе до 15 м, в воде и биологической ткани – до 12 мм, и алюминии – до 5 мм. В биологической ткани вызывают ионизацию атомов, что приводит к нарушению синтеза белка, нарушению функции организма в целом. Количество бета-частиц попавших в организм человека выводятся на 50% в течение 60 дней нахождения человека в чистой зоне (стронций -90; иод-131; цезий- 137).

Гамма-лучи () – проникающая способность этих лучей очень велика. Так, например, чтобы ослабить гамма-излучение радиоактивного кобальта вдвое, нужно установить защиту из слоя свинца толщиной 1,6 см или слоя бетона толщиной 10 см.

При попадании в организм человека действуют на иммунную систему, вызывает нарушения структуры ДНК (впоследствии, через 10-15 лет возможны онкологические заболевания, биологические изменения в организме), цезий 137.

Таким образом, под проникающей радиацией понимают поток гамма (?)-лучей и нейтронов.

Сейчас каждый школьник знает, что радиация разрушает организм человека, может вызвать лучевую болезнь различной степени. Повреждений, вызванных в живом организме излучением, будет тем больше, чем больше энергии он передаст тканям.
Доза – количество переданной организму энергии.
За единицу дозы принят рентген (Р)
1 рентген (Р) – это такая доза?- излучения, при которой в 1 см3 сухого воздуха при температуре 00С и давлении 760 мм рт. ст.образуется 2, 08 млрд. пар ионов
(2,08х 109).
На организм человека воздействует не вся энергия излучения, а только поглощенная энергия.

Поглощенная доза более точно характеризует воздействие ионизирующих лучей на биологические ткани и измеряется во внесистемных единицах, называемых рад.

Надо учитывать тот факт, что при одинаковой поглощенной дозе альфа излучения гораздо опаснее (в 20 раз) чем бета и гамма излучений. Каждый орган человека имеет свой порог восприимчивости к ионизирующему излучению, поэтому дозу облучения определенной ткани (органа) человека следует умножить на коэффициент, отражающий способность излучения данного органа. Пересчитанную таким образом дозу называют эквивалентной дозой; в СИ ее измеряют в единицах, называемых зивертами (Зв).

Активность радионуклида – означает число распадов в секунду. Один беккерель равен одному распаду в секунду.

Величины и единицы, используемые в дозиметрии ионизирующих излучений

Физическая величина и ее символ

Внесистемная

Соотношения между ними

Активность (С)

Беккерель (Бк)

1 Бк=1расп/с=2.7х10 -11 Ки
1Ки=3,7х10 10 Бк

Поглощенная доза (Д)

1Гр=100рад=1Дж/кг
1рад=10 -2 Гр=100эрг/г

Эквивалентная доза (Н)

Зиверт (Зв)

1Зв=100бэр=1Гр х Q=
=1Дж/кг х Q1бэр=10 -2 Зв=
=10 -2 Гр х Q

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...