Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Генератор своими руками: лучшие идеи и советы, как изготовить современный генератор своими руками (инструкция с фото и чертежами). Самодельный бензогенератор своими руками — особенности исполнения Генератор из подручных средств

Для питания бытовых устройств и промышленного оборудования необходим источник электроэнергии. Выработать электрический ток возможно несколькими способами. Но наиболее перспективным и экономически выгодным, на сегодняшний день, является генерация тока электрическими машинами. Самым простым в изготовлении, дешёвым и надёжным в эксплуатации оказался асинхронный генератор, вырабатывающий львиную долю потребляемой нами электроэнергии.

Применение электрических машин этого типа продиктовано их преимуществами. Асинхронные электрогенераторы, в отличие от , обеспечивают:

  • более высокую степень надёжности;
  • длительный срок эксплуатации;
  • экономичность;
  • минимальные затраты на обслуживание.

Эти и другие свойства асинхронных генераторов заложены в их конструкции.

Устройство и принцип работы

Главными рабочими частями асинхронного генератора является ротор (подвижная деталь) и статор (неподвижный). На рисунке 1 ротор расположен справа, а статор слева. Обратите внимание на устройство ротора. На нём не видно обмоток из медной проволоки. На самом деле обмотки существуют, но они состоят из алюминиевых стержней короткозамкнутых на кольца, расположенные с двух сторон. На фото стержни видны в виде косых линий.

Конструкция короткозамкнутых обмоток образует, так называемую, «беличью клетку». Пространство внутри этой клетки заполнено стальными пластинами. Если быть точным, то алюминиевые стержни впрессовываются в пазы, проделанные в сердечнике ротора.

Рис. 1. Ротор и статор асинхронного генератора

Асинхронная машина, устройство которой описано выше, называется генератором с короткозамкнутым ротором. Тот, кто знаком с конструкцией асинхронного электродвигателя наверняка заметил схожесть в строении этих двух машин. По сути дела они ничем не отличаются, так как асинхронный генератор и короткозамкнутый электродвигатель практически идентичны, за исключением дополнительных конденсаторов возбуждения, используемых в генераторном режиме.

Ротор расположен на валу, который сидит на подшипниках, зажимаемых с двух сторон крышками. Вся конструкция защищена металлическим корпусом. Генераторы средней и большой мощности требуют охлаждения, поэтому на валу дополнительно устанавливается вентилятор, а сам корпус делают ребристым (см. рис. 2).


Рис. 2. Асинхронный генератор в сборе

Принцип действия

По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. При этом не имеет значения, какая энергия используется для вращения ротора: ветровая, потенциальная энергия воды или же внутренняя энергия, преобразуемая турбиной либо ДВС в механическую.

В результате вращения ротора магнитные силовые линии, образованные остаточной намагниченностью стальных пластин, пересекают обмотки статора. В катушках образуется ЭДС, которая, при подсоединении активных нагрузок, приводит к образованию тока в их цепях.

При этом важно, чтобы синхронная скорость вращения вала немного (примерно на 2 – 10%) превышала синхронную частоту переменного тока (задаётся количеством полюсов статора). Другими словами, необходимо обеспечить асинхронность (несовпадение) частоты вращения на величину скольжения ротора.

Следует заметить, что полученный таким образом ток будет небольшим. Чтобы повысить выходную мощность необходимо увеличить магнитную индукцию. Добиваются повышения КПД устройства путём подключения конденсаторов к выводам катушек статора.

На рисунке 3 изображена схема сварочного асинхронного альтернатора с конденсаторным возбуждением (левая часть схемы). Обратите внимание на то, что конденсаторы возбуждения подключены по схеме треугольника. Правая часть рисунка – собственно схема самого инверторного сварочного аппарата.


Рис. 3. Схема сварочного асинхронного генератора

Существуют и другие, более сложные схемы возбуждения, например, с применением катушек индуктивности и батареи конденсаторов. Пример такой схемы показан на рисунке 4.


Рисунок 4. Схема устройства с индуктивностями

Отличие от синхронного генератора

Главное отличие синхронного альтернатора от асинхронного генератора в конструкции ротора. В синхронной машине ротор состоит из проволочных обмоток. Для создания магнитной индукции используется автономный источник питания (часто дополнительный маломощный генератор постоянного тока, расположенный на одной оси с ротором).

Преимущество синхронного генератора в том, что он генерирует более качественный ток и легко синхронизируется с другими альтернаторами подобного типа. Однако синхронные альтернаторы более чувствительны к перегрузкам и КЗ. Они дороже от своих асинхронных собратьев и требовательнее в обслуживании – необходимо следить за состоянием щёток.

Коэффициент гармоник или клирфактор асинхронных генераторов ниже, чем у синхронных альтернаторов. То есть они вырабатывают практически чистую электроэнергию. На таких токах устойчивее работают:

  • регулируемые зарядные устройства;
  • современные телевизионные приёмники.

Асинхронные генераторы обеспечивают уверенный запуск электромоторов, требующих больших пусковых токов. По этому показателю они, фактически, не уступают синхронным машинам. У них меньше реактивных нагрузок, что положительно сказывается на тепловом режиме, так как меньше энергии расходуется на реактивную мощность. У асинхронного альтернатора лучшая стабильность выходной частоты на разных скоростях вращения ротора.

Классификация

Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.

На рисунке 5 для сравнения показаны два типа генераторов: слева на базе , а справа – асинхронная машина на базе АД с фазным ротором. Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора. Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5). Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения.


Рис. 5. Типы асинхронных генераторов

Наличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность. Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись. Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.

Область применения

Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.

Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают , их используют для мощных мобильных и .

Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.

Сфера применения довольно обширная:

  • транспортная промышленность;
  • сельское хозяйство;
  • бытовая сфера;
  • медицинские учреждения;

Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.

Асинхронный генератор своими руками

Оговоримся сразу: речь пойдёт не об изготовлении генератора с нуля, а о переделывании асинхронного двигателя в альтернатор. Некоторые умельцы используют готовый статор от мотора и экспериментируют с ротором. Идея состоит в том, чтобы с помощью неодимовых магнитов сделать полюса ротора. Примерно так может выглядеть заготовка с наклеенными магнитиками (см. рис. 6):


Рис. 6. Заготовка с наклеенными магнитами

Вы наклеиваете магниты на специально выточенную заготовку, посаженную на валу электродвигателя, соблюдая их полярность и угол сдвига. Для этого потребуется не менее 128 магнитиков.

Готовую конструкцию необходимо подогнать к статору и при этом обеспечить минимальный зазор между зубцами и магнитными полюсами изготовленного ротора. Поскольку магнитики плоские, придётся их шлифовать или обтачивать, при этом постоянно охлаждая конструкцию, так как неодим теряет свои магнитные свойства при высокой температуре. Если вы сделаете всё правильно – генератор заработает.

Проблема состоит в том, что в кустарных условиях очень сложно изготовить идеальный ротор. Но если у вас есть токарный станок и вы готовы потратить несколько недель на подгонку и доработки – можете поэкспериментировать.

Я предлагаю более практичный вариант – превращение асинхронного двигателя в генератор (смотрите видео ниже). Для этого вам понадобится электромотор с подходящей мощностью и приемлемой частотой вращения ротора. Мощность двигателя должна быть минимум на 50% выше от требуемой мощности альтернатора. Если такой электромотор есть в вашем распоряжении – приступайте к переработке. В противном случае лучше купить готовый генератор.

Для переработки вам потребуется 3 конденсатора марки КБГ-МН, МБГО, МБГТ (можно брать другие марки, но не электролитические). Конденсаторы подбирайте на напряжение не менее 600 В (для трёхфазного двигателя). Реактивная мощность генератора Q связанная с емкостью конденсатора следующей зависимостью: Q = 0,314·U 2 ·C·10 -6 .

При увеличении нагрузки возрастает реактивная мощность, а значит, для поддержания стабильного напряжения U необходимо увеличивать ёмкость конденсаторов, добавляя новые ёмкости путём коммутации.

Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1

Часть 2

На практике, обычно выбирают среднее значение, предполагая, что нагрузка не будет максимальной.

Подобрав параметры конденсаторов, подключите их к выводам обмоток статора так, как показано на схеме (рис. 7). Генератор готов.


Рис. 7. Схема подключения конденсаторов

Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.

Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.

При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.

Универсальное применение электроэнергии во всех сферах человеческой деятельности сопряжено с поисками бесплатного электричества. Из-за чего новой вехой в развитии электротехники стала попытка создать генератор свободной энергии, который позволили бы значительно удешевить или свести к нулю затраты на получение электроэнергии. Наиболее перспективным источником для реализации этой задачи является свободная энергия.

Что представляет собой свободная энергия?

Термин свободной энергии возник во времена широкомасштабного внедрения и эксплуатации двигателей внутреннего сгорания, когда проблема получения электрического тока напрямую зависела от затрачиваемых для этого угля, древесины или нефтепродуктов. Поэтому под свободной энергией понимается такая сила, для добычи которой нет необходимости сжигать топливо и, соответственно, расходовать какие-либо ресурсы.

Первые попытки научного обоснования возможности получения бесплатной энергии были заложены Гельмгольцем, Гиббсом и Теслой. Первый из них разработал теорию создания системы, в которой вырабатываемая электроэнергия должна быть равной или больше затрачиваемой для начального пуска, то есть получения вечного двигателя. Гиббс высказал возможность получения энергии при протекании химической реакции настолько длительной, чтобы этого хватало для полноценного электроснабжения. Тесла наблюдал энергию во всех природных явлениях и высказал теорию о наличии эфира – субстанции, пронизывающей все вокруг нас.

Сегодня вы можете наблюдать реализацию этих принципов для получения свободной энергетики в . Некоторые из них давно встали на службу человечеству и помогают получать альтернативную энергетику из ветра, солнца, рек, приливов и отливов. Это те же солнечные батареи, гидроэлектростанции, которые помогли обуздать силы природы, находящиеся в свободном доступе. Но наряду с уже обоснованными и воплощенными в жизнь генераторами свободной энергии существуют концепции бестопливных двигателей, которые пытаются обойти закон сохранения энергии.

Проблема сохранения энергии

Главный камень преткновения в получении бесплатного электричества – закон сохранения энергии. Из-за наличия электрического сопротивления в самом генераторе, соединительных проводах и в других элементах электрической сети, согласно законов физики, происходит потеря выходной мощности. Энергия расходуется и для ее пополнения требуется постоянная подпитка извне или система генерации должна создавать такой избыток электрической энергии, чтобы ее хватало и для питания нагрузки, и для поддержания работы генератора. С математической точки зрения генератор свободной энергии должен иметь КПД более 1, что не укладывается в рамки стандартных физических явлений.

Схема и конструкция генератора Теслы

Никола Тесла стал открывателем физических явлений и создал на их основе многие электрические приборы, к примеру, трансформаторы Тесла, которые используются человечеством, и по сей день. За всю историю своей деятельности он запатентовал тысячи изобретений, среди которых есть не один генератор свободной энергии.

Рис. 1: Генератор свободной энергии Тесла

Посмотрите на рисунок 1, здесь приведен принцип получения электроэнергии при помощи генератора свободной энергии, собранного из катушек Тесла. Это устройство предполагает получение энергии из эфира, для чего катушки, входящие в его состав настраиваются на резонансную частоту. Для получения энергии из окружающего пространства в данной системе необходимо соблюдать следующие геометрические соотношения:

  • диаметр намотки;
  • сечения провода для каждой из обмоток;
  • расстояние между катушками.

Сегодня известны различные варианты применения катушек Тесла в конструкции других генераторов свободной энергии. Правда, каких-либо значимых результатов их применения добиться, еще не удалось. Хотя некоторые изобретатели утверждают обратное, и держат результат своих разработок в строжайшей тайне, демонстрируя лишь конечный эффект работы генератора. Помимо этой модели известны и другие изобретения Николы Теслы, которые являются генераторами свободной энергии.

Генератор свободной энергии на магнитах

Эффект взаимодействия магнитного поля и катушки широко применяется в . А в генераторе свободной энергии этот принцип применяется не для вращения намагниченного вала за счет подачи электрических импульсов на обмотки, а для подачи магнитного поля в электрическую катушку.

Толчком к развитию данного направления стал эффект, полученный при подаче напряжения на электромагнит (катушку намотанную на магнитопровод). При этом находящийся поблизости постоянный магнит притягивается к концам магнитопровода и остается притянутым даже после отключения питания от катушки. Постоянный магнит создает в сердечнике постоянный поток магнитного поля, которое будет удерживать конструкцию до тех пор, пока ее не оторвут физическим воздействием. Этот эффект был применен в создании схемы генератора свободной энергии на постоянных магнитах.


Рис. 2. Принцип действия генератора на магнитах

Посмотрите на рисунок 2, для создания такого генератора свободной энергии и питания от него нагрузки необходимо сформировать систему электромагнитного взаимодействия, которая состоит из:

  • пусковой катушки (I);
  • запирающей катушки (IV);
  • питающей катушки (II);
  • поддерживающей катушки (III).

Также в схему входит управляющий транзистор VT, конденсатор C, диоды VD, ограничительный резистор R и нагрузка Z­ H .

Данный генератор свободной энергии включается посредством нажатия кнопки «Пуск», после чего управляющий импульс подается через VD6 и R6 на базу транзистора VT1. При поступлении управляющего импульса транзистор открывается и замыкает цепь протекания тока через пусковые катушки I. После чего электрический ток протечет по катушкам I и возбудит магнитопровод, который притянет постоянный магнит. По замкнутому контуру магнитосердечника и постоянного магнита будут протекать силовые линии магнитного поля.

От протекающего магнитного потока в катушках II, III, IV наводится ЭДС. Электрический потенциал от IV катушки подается на базу транзистора VT1, создавая управленческий сигнал. ЭДС в катушке III предназначена для поддержания магнитного потока в магнитопроводах. ЭДС в катушке II обеспечивает электроснабжение нагрузки.

Камнем преткновения в практической реализации такого генератора свободной энергии является создание переменного магнитного потока. Для этого в схеме рекомендуется установить два контура с постоянными магнитами, в которых силовые линии имеют встречное направление.

Кроме вышеприведенного генератора свободной энергии на магнитах сегодня существует ряд схожих устройств конструкции Серла, Адамса и других разработчиков, в основе генерации которых лежит использование постоянного магнитного поля.

Последователи Николы Теслы и их генераторы

Посеянные Теслой семена невероятных изобретений породили в умах соискателей неутолимую жажду воплотить в реальность фантастические идеи создания вечного двигателя и отправить механические генераторы на пыльную полку истории. Наиболее известные изобретатели использовали принципы изложенные Николой Тесла в своих устройствах. Рассмотрим наиболее популярные из них.

Лестер Хендершот

Хендершот развивал теорию о возможности использования магнитного поля Земли для генерации электроэнергии. Первые модели Лестер представил еще в 1930-х годах, но они так и не были востребованы его современниками. Конструктивно генератор Хендершота состоит из двух катушек со встречной намоткой, двух трансформаторов, конденсаторов и подвижного соленоида.


Рис. 3: общий вид генератора Хендершота

Работа такого генератора свободной энергии возможна только при его строгой ориентации с севера на юг, поэтому для настройки работы обязательно используется компас. Намотка катушек выполняется на деревянных основаниях с разнонаправленной намоткой, чтобы снизить эффект взаимной индукции (при наведении в них ЭДС, в обратную сторону ЭДС наводится не будет). Помимо этого катушки должны настраиваться резонансным контуром.

Джон Бедини

Свой генератор свободной энергии Бедини представил в 1984 году, особенностью запатентованного устройства был энерджайзер – устройство с постоянным вращающимся моментом, которое не теряет оборотов. Такой эффект был достигнут за счет установки на диск нескольких постоянных магнитов, которые при взаимодействии с электромагнитной катушкой создают в ней импульсы и отталкиваются от ферромагнитного основания. Благодаря чему генератор свободной энергии получал эффект самозапитки.

Более поздние генераторы Бедини стали известны за счет одного школьного эксперимента. Модель оказалась значительно проще и не представляла собой чего-то грандиозного, но она смогла выполнять функции генератора свободного электричества порядка 9 дней без помощи извне.


Рис. 4: принципиальная схема генератора Бедини

Посмотрите на рисунок 4, здесь приведена принципиальная схема генератора свободной энергии того самого школьного проекта. В ней используются следующие элементы:

  • вращающийся диск с несколькими постоянными магнитами (энерджайзер);
  • катушка с ферромагнитным основанием и двумя обмотками;
  • аккумулятор (в данном примере он был заменен на батарейку 9В);
  • блок управления из транзистора (Т), резистора (Р) и диода (Д);
  • токосъем организован с дополнительной катушки, питающей светодиод, но можно производить питание и от цепи аккумулятора.

С началом вращения постоянные магниты создают магнитное возбуждение в сердечнике катушки, которое наводит ЭДС в обмотках выходных катушек. За счет направления витков в пусковой обмотке ток начинает протекать, как показано на рисунке ниже через пусковую обмотку, резистор и диод.


Рис. 5: начало работы генератора Бедини

Когда магнит находится непосредственно над соленоидом, сердечник насыщается и запасенной энергии становится достаточно для открытия транзистора Т. При открытии транзистора, ток начинает протекать и в рабочей обмотке, осуществляющей подзаряд аккумулятора.


Рисунок 6: запуск обмотки подзаряда

Энергии на этом этапе становится достаточно для намагничивания ферромагнитного сердечника от рабочей обмотки, и он получает одноименный полюс с находящимся над ним магнитом. Благодаря магнитному полюсу в сердечнике, магнит на вращающемся колесе отталкивается от этого полюса и ускоряет дальнейшее движение энерджайзера. С ускорением движения импульсы в обмотках возникают все чаще, и светодиод с мигающего режима переходит в режим постоянного свечения.

Увы, такой генератор свободной энергии не является вечным двигателем, на практике он позволил системе работать в десятки раз дольше, чем она смогла бы функционировать на одной батарейке, но со временем все равно останавливается.

Тариель Капанадзе

Капанадзе разрабатывал модель своего генератора свободной энергии в 80 — 90-х годах прошлого века. Механическое устройство основывалось на работе усовершенствованной катушки Тесла, как утверждал сам автор, компактный генератор мог питать потребители мощностью в 5 кВт. В 2000-х генератор Капанадзе промышленных масштабов на 100 кВт попытались построить в Турции, по техническим характеристикам ему для пуска и работы требовалось всего 2 кВт.


Рис. 7: принципиальная схема генератора Капанадзе

На рисунке выше приведена принципиальная схема генератора свободной энергии, но основные параметры схемы остаются коммерческой тайной.

Практические схемы генераторов свободной энергии

Несмотря на большое количество существующих схем генераторов свободной энергии совсем немногие из них могут похвастаться реальными результатами, которые можно было бы проверить и повторить в домашних условиях.


Рис. 8: рабочая схема генератора Тесла

На рисунке 8 выше приведена схема генератора свободной энергии, которую вы можете повторить в домашних условиях. Этот принцип был изложен Николой Тесла, для его работы используется металлическая пластина, изолированная от земли и расположенная на какой-либо возвышенности. Пластина является приемником электромагнитных колебаний в атмосфере, сюда входит достаточно широкий спектр излучений (солнечных, радиомагнитных волн, статического электричества от движения воздушных масс и т.д.)

Приемник подключается к одной из обкладок конденсатора, а вторая обкладка заземляется, что и создает требуемую разность потенциалов. Единственным камнем преткновения к его промышленной реализации является необходимость изолировать на возвышенности пластину большой площади для питания хотя бы частного дома.

Современный взгляд и новые разработки

Несмотря на повсеместную заинтересованность созданием генератора свободной энергии, вытеснить с рынка классический способ получения электроэнергии они еще не могут. Разработчикам прошлого, выдвигавшим смелые теории по поводу значительного удешевления электроэнергии, не хватало технического совершенства оборудования или параметры элементов не могли обеспечить надлежащего эффекта. А благодаря научно-техническому прогрессу человечество получает все новые и новые изобретения, которые делают уже осязаемым воплощение генератора свободной энергии. Следует отметить, что сегодня уже получены и активно эксплуатируются генераторы свободной энергии, работающие на силе солнце и ветра.

Но, в то же время, в интернете вы можете встретить предложения о приобретении таких устройств, хотя в большинстве своем это пустышки, созданные с целью обмануть неосведомленного человека. А небольшой процент реально работающих генераторов свободной энергии, будь то на резонансных трансформаторах, катушках или постоянных магнитах, может справляться лишь с питанием маломощных потребителей, обеспечить электроэнергией, к примеру, частный дом или освещение во дворе они не могут. Генераторы свободной энергии – перспективное направление, но их практическая реализация все еще не воплощена в жизнь.

Электрогенератор является основным элементом автономной электростанции. Если в вашем частном доме или на даче не подведено электричество, вы задаетесь вопросом, как можно самостоятельно устранить эту проблему?

Возможно, отличным решением будет приобретение электрогенератора в торговой сети. Но стоимость даже маломощных моделей начинается с 15 000 рублей, поэтому необходимо искать другой выход. Оказывается, он есть. Вполне реально собрать электрогенератор своими руками, и осуществить его подключение.

Для этого потребуется немного. Навыки в обращении с инструментом и знание азов электротехники. Главным двигателем процесса станет ваше желание, который представляет собой трудоемкую и ответственную процедуру. Дополнительным стимулом будет возможность экономии большого количества денежных средств.

Электрогенераторы для дома своими руками: способы реализации

Немного теории. Основой возникновения в проводнике электрического тока является электродвижущая сила. Ее появление происходит в результате воздействия на проводник, изменяющимся магнитным полем. Величина электродвижущей силы зависит от скорости изменения потока магнитных волн. Этот эффект и лежит в основе создания синхронных и асинхронных электрических машин. Поэтому не представляет трудности превращение генератора тока в электродвигатель и наоборот.

Для загородного дома или дачного участка генератор постоянного тока применяется крайне редко. Он может быть в специальном исполнении использован для сварочного аппарата. В основном область его применения распространяется на промышленность. Генератор перемененного тока предназначен вырабатывать электричество в огромном количестве, поэтому на даче или в загородном коттедже он станет прекрасной альтернативой центрального энергоснабжения. Стало быть для создания генератора переменного тока в домашних условиях своими руками займемся преобразованием асинхронного электродвигателя. Принцип работы генератора переменного тока заключается в превращении механической энергии в электрическую. Пример элементарного электрического генератора можно увидеть на видео.

Такой уникальный способ получения света очень интересен. Немного усовершенствовав его, получаем возможность обеспечения себя освещением в походе или на природе. Единственное условие, ехать придется на велосипеде, прихватив небольшое, но нужное приспособление.

В данном случае для получения вращающегося электромагнитном поле проводника, запускаем двигатель. Зачастую применяют двигатель внутреннего сгорания. Топливо сжигаясь в камере сгорания придает возвратно поступательное движение поршню, который через шатун заставляет вращаться коленчатый вал. Он в свою очередь передает вращательное движение на ротор генератора, который перемещаясь в магнитном поле статора вырабатывает на выходе электрический ток.

Состоит генератор переменного тока из следующих деталей:

  • корпусная часть из стали или чугуна, которая выполняет функцию рамы для крепления статора и подшипниковых узлов ротора, кожуха для предохранения всей внутренней начинки от механического повреждения;
  • ферромагнитный статор с обмоткой возбуждения магнитного потока;
  • подвижная часть (ротор) с обмоткой самовозбуждения, вал которой приводится в движение воздействием постороннего усилия;
  • узел коммутации, служащий для снятия электричества с движущегося ротора с помощью графитовых токосъемных контактов.

Основополагающими составляющими генератора переменного тока, вне зависимости от количества потребленного топлива и мощности двигателя являются ротор и статор. Первый создает магнитное поле, а второй его генерирует.

В отличии от синхронных генераторов, имеющих сложную конструкцию и меньшую продуктивность, асинхронный аналог обладает целым перечнем весомых преимуществ:

  1. Более высоким КПД, потери в 2 раза ниже, чем у синхронных генераторов.
  2. Простота корпуса не снижает его функциональности. Он надежно защищает статор и ротор от попадания влаги и отработанного масла, чем увеличивает межремонтный период.
  3. Устойчив к перепадам напряжения, кроме того установленный на выходе выпрямитель предохраняет электроприборы от поломки.
  4. Возможно подавать питание на приборы повышенной чувствительности, имеющие омическую нагрузку.
  5. Долговечны. Срок службы исчисляется десятками лет.

Основными составляющими электрогенератора являются система катушек и система электромагнитов (или другая магнитная система).

Принцип работы электрогенератора заключается в преобразовании вращательной механической энергии в электрическую.

Система магнитов создает магнитное поле, а система катушек вращается в нем, превращая его в поле электрическое.


Кроме того, система генератора включает систему отвода напряжения, связывающую сам генератор с приборами потребления тока.

Одним из самых простых способов является использование асинхронного генератора.

Для создания электрогенератора нам понадобится два основных элемента: асинхронный генератор и 2-х цилиндровый двигатель, работающий на бензине.

Бензиновый двигатель должен иметь воздушное охлаждение, 8 лошадиных сил и скорость 3000 оборотов в минуту.

Асинхронным генератором выступит обыкновенный электрический двигатель с мощностью до 15 кВт и скоростью от 750 до 1500 оборотов в минуту.

Частота вращения асинхронника для нормальной работы должна быть выше синхронного количества оборотов используемого электрического двигателя на 10 процентов.

Поэтому асинхронный двигатель нужно раскрутить до оборотов на 5-10 процентов выше номинальных. Как же это можно сделать?

Поступаем следующим образом: включаем электродвигатель в сеть, после чего замеряем тахометром частоту вращения в холостом режиме.

Что имеется в виду? Рассмотрим на примере двигателя, у которого номинальная частота вращения составляет 900 оборотов в минуту .

Такой двигатель при работе в холостом режиме будет выдавать 1230 оборотов в минуту.

Таким образом, в случае с приведенными данными, ременная передача должна быть рассчитана на обеспечение частоты вращения генератора, и равняться 1353 оборотам в минуту .

Обмотки нашего асинхронника соединяются «звездой». Они вырабатывают трехфазное напряжение, мощностью 380 В.

Чтобы поддерживать в асинхроннике номинальное напряжение, нужно верно подобрать емкость конденсаторов между фазами.

Емкости, их всего три, являются одинаковыми.

Если ощущается нагрев, это означает, что подключенная емкость слишком велика.

Чтобы подобрать необходимую емкость для каждой фазы, можно воспользоваться следующими данными, исходя из мощности генератора:

  • 2 кВт – емкость 60 мкФ
  • 3,5 кВт – емкость 100 мкФ
  • 5 кВт – 138 мкФ
  • 7 кВт – 182 мкФ
  • 10 кВт – 245 мкФ
  • 15 кВт – 342 мкФ

Для работы можно применять конденсаторы с рабочим напряжением минимум 400 В. Когда вы выключаете генератор, на его конденсаторах остается электрический заряд.

Очевидно, что это означает определенную степень опасности проводимых работ. Во избежание поражения электрическим током обязательно нужно предпринимать меры предосторожности.

Электрогенератор позволяет работать с ручным электроинструментом.

Для этого Вам понадобится трансформатор с 380 В на 220 В. При подключении 3-х фазного двигателя к электростанции может выйти так, что генератор с первого раза не сможет его запустить.

Это не страшно – достаточно сделать серию кратковременных включений двигателя.

Их нужно производить до тех пор, пока двигатель не наберет обороты.

Другой вариант – его можно раскрутить вручную.

Второй вариант самостоятельно сделать электрогенератор 220\380 В – это использовать в качестве базы мотоблок.

Мотоблок очень широко используется для вспашки и уборки дачных участков – но это далеко не предел вариантов его полезного использования.

Как оказалось, и было подтверждено опытом огромного количества людей, он помогает решить проблему с электричеством в домах и пристройках, куда оно не подведено.

Нам понадобится мотоблок и асинхронный электродвигатель, частота оборотов которого будет составлять от 800 до 1600 оборотов в минуту , а мощность – до 15 кВт.

Двигатель мотоблока и асинхронник необходимо связать. Это делается путем использования 2-х шкивов и приводного ремня.

Важен диаметр шкивов. А именно, он должен быть таковым, чтобы обеспечивать превышение частоты вращения генератора на 10-15% от номинального значения оборотов в электродвигателе.

Параллельно к каждой паре обмоток включаем конденсаторы. Таким образом, они будут образовывать треугольник.

Напряжение необходимо снимать между концом обмотки и ее средней точкой. В результате, получаем напряжение в 380 В – между обмотками, и напряжение в 220 В – между серединой и концом обмотки.

После этого нужно подобрать конденсаторы, которые будут обеспечивать правильность режима запуска и работы электрогенератора.

Помним, что всем трем генераторам присуща одинаковая емкость.

Соотношение между мощностью генератора и требуемой емкостью следующее:

  • 2 кВт – емкость 60 мкФ
  • 3,5 кВт – емкость 100 мкФ
  • 5 кВт – 140 мкФ
  • 7 кВт – 180 мкФ
  • 10 кВт – 250 мкФ
  • 15 кВт – 350 мкФ

Возможно, вам будет достаточно использовать всего один конденсатор для требуемых нагрузок. Прочие условия нужно подбирать на практике самостоятельно.

Электрогенератор, сделанный своими руками, можно использовать, в том числе, для отопления частного дома или дачи.

В таком случае, вам понадобится более мощный бензиновый двигатель, например, от легкового автомобиля, который можно купить на разборке.

Подключение электрогенератора к частному дому , как произвести?

  1. отключите в доме электросеть;
  2. запустите и прогрейте электрогенератор;
  3. подключите электрогенератор к сети;
  4. следите за появлением нормальной электросети;
  5. отсоедините электрогенератор от резервной сети и заглушите его (перед этим выключите в доме все работающие электроприборы).

Будьте внимательны: если произвести эти действия в неправильном порядке, может возникнуть встречное включение электрогенератора, от чего произойдет поломка.

Выбор электрогенератора для дома

Для определения того, какой мощностью генератор вам следует выбрать, необходимо оценить весь активный вид нагрузок.

Здесь учитываются все лампочки, электрочайник, СВЧ, обогреватели, электроинструмент. То есть все приборы, которые вы планируете использовать.

К примеру, если вы собираетесь использовать пару-тройку приборов и еще несколько лампочек, вам следует сложить общую мощность потребляемой ими энергии.

Так, для ситуации, когда вам нужно заставить светить 6 лампочек мощностью 100 Вт, работать масляный обогреватель мощностью 1,5 киловатт и СВЧ-печь той же мощностью, расчет выглядит следующим образом: 1,5х2 + 600 (100 Вт на 6 ламп) = 3,6 киловатт.

Именно такая мощность (либо чуть больше) генератора вам потребуется.

А также вы можете посмотреть видео электрогенератор своими руками

Подобрано для вас:

В статье рассказано о том, как построить трёхфазный (однофазный) генератор 220/380 В на базе асинхронного электродвигателя переменного тока. Трехфазный асинхронный электродвигатель, изобретённый в конце 19-го века русским учёным-электротехником М.О. Доливо-Добровольским, получил в настоящее время преимущественное распространение и в промышленности, и в сельском хозяйстве, а также в быту.

Асинхронные электродвигатели - самые простые и надёжные в эксплуатации. Поэтому во всех случаях, когда это допустимо по условиям электропривода и нет необходимости в компенсации реактивной мощности, следует применять асинхронные электродвигатели переменного тока.

Различают два основных вида асинхронных двигателей: с короткозамкнутым ротором и с фазным ротором. Асинхронный короткозамкнутый электродвигатель состоит из неподвижной части - статора и подвижной части - ротора, вращающегося в подшипниках, укреплённых в двух щитах двигателя. Сердечники статора и ротора набраны из отдельных изолированных один от другого листов электротехнической стали. В пазы сердечника статора уложена обмотка, выполненная из изолированного провода. В пазы сердечника ротора укладывают стержневую обмотку или заливают расплавленный алюминий. Кольца-перемычки накоротко замыкают обмотку ротора по концам (отсюда и название - короткозамкнутый). В отличие от короткозамкнутого ротора, в пазах фазного ротора размещают обмотку, выполненную по типу обмотки статора. Концы обмотки подводят к контактным кольцам, укреплённым на валу. По кольцам скользят щетки, соединяя обмотку с пусковым или регулировочным реостатом.

Асинхронные электродвигатели с фазным ротором являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.

По обмотке статора, включенной в трехфазную цепь, протекает ток, создающий вращающее магнитное поле. Магнитные силовые линии вращающегося поля статора пересекают стержни обмотки ротора и индуктируют в них электродвижущую силу (ЭДС). Под действием этой ЭДС в замкнутых накоротко стержнях ротора протекает ток. Вокруг стержней возникают магнитные потоки, создающие общее магнитное поле ротора, которое, взаимодействуя с вращающим магнитным полем статора, создает усилие, заставляющее ротор вращаться в направлении вращения магнитного поля статора.

Частота вращения ротора несколько меньше частоты вращения магнитного поля, создаваемого обмоткой статора. Этот показатель характеризуется скольжением S и находиться для большинства двигателей в пределах от 2 до 10%.

В промышленных установках наиболее часто используются трёхфазные асинхронные электродвигатели , которые выпускают в виде унифицированных серий. К ним относится единая серия 4А с диапазоном номинальной мощности от 0,06 до 400 кВт, машины которой отличаются большой надёжностью, хорошими эксплуатационными качествами и соответствуют уровню мировых стандартов.

Автономные асинхронные генераторы - трёхфазные машины, преобразующие механическую энергию первичного двигателя в электрическую энергию переменного тока. Их несомненным достоинством перед другими видами генераторов являются отсутствие коллекторно-щеточного механизма и, как следствие этого, большая долговечность и надежность.

Работа асинхронного электродвигателя в генераторном режиме

Если отключенный от сети асинхронный двигатель привести во вращение от какого-либо первичного двигателя, то в соответствии с принципом обратимости электрических машин при достижении синхронной частоты вращения, на зажимах статорной обмотки под действием остаточного магнитного поля образуется некоторая ЭДС. Если теперь к зажимам статорной обмотки подключить батарею конденсаторов С, то в обмотках статора потечёт опережающий ёмкостный ток, являющийся в данном случае намагничивающим.

Ёмкость батареи С должна превышать некоторое критическое значение С0, зависящее от параметров автономного асинхронного генератора: только в этом случае происходит самовозбуждение генератора и на обмотках статора устанавливается трёхфазная симметричная система напряжений. Значение напряжения зависит, в конечном счёте, от характеристики машины и ёмкости конденсаторов. Таким образом, асинхронный короткозамкнутый электродвигатель может быть превращен в асинхронный генератор.

Стандартная схема включения асинхронного электродвигателя в качестве генератора.

Можно подобрать емкость так, чтобы номинальное напряжение и мощность асинхронного генератора равнялись соответственно напряжению и мощности при работе его в качестве электродвигателя.

В таблице 1 приведены емкости конденсаторов для возбуждения асинхронных генераторов (U=380 В, 750….1500 об/мин). Здесь реактивная мощность Q определена по формуле:

Q = 0,314·U 2 ·C·10 -6 ,

где С - ёмкость конденсаторов, мкФ.

Мощность генератора,кВ·А Холостой ход
ёмкость, мкФ реактивная мощность, квар cos = 1 cos = 0,8
ёмкость, мкФ реактивная мощность, квар ёмкость, мкФ реактивная мощность, квар
2,0
3,5
5,0
7,0
10,0
15,0
28
45
60
74
92
120
1,27
2,04
2,72
3,36
4,18
5,44
36
56
75
98
130
172
1,63
2,54
3,40
4,44
5,90
7,80
60
100
138
182
245
342
2,72
4,53
6,25
8,25
11,1
15,5

Как видно из приведённых данных, индуктивная нагрузка на асинхронный генератор, понижающая коэффициент мощности, вызывает резкое увеличение потребной ёмкости. Для поддержания напряжения постоянным с увеличением нагрузки необходимо увеличивать и ёмкость конденсаторов, то есть подключать дополнительные конденсаторы. Это обстоятельство необходимо рассматривать как недостаток асинхронного генератора.

Частота вращения асинхронного генератора в нормальном режиме должна превышать асинхронную на величину скольжения S = 2…10%, и соответствовать синхронной частоте. Не выполнение данного условия приведёт к тому, что частота генерируемого напряжения может отличаться от промышленной частоты 50 Гц, что приведёт к неустойчивой работе частото-зависимых потребителей электроэнергии: электронасосов, стиральных машин, устройств с трансформаторным входом.

Особенно опасно снижение генерируемой частоты, так как в этом случае понижается индуктивное сопротивление обмоток электродвигателей, трансформаторов, что может стать причиной их повышенного нагрева и преждевременного выхода из строя.

В качестве асинхронного генератора может быть использован обычный асинхронный короткозамкнутый электродвигатель соответствующей мощности без каких-либо переделок. Мощность электродвигателя-генератора определяется мощностью подключаемых устройств. Наиболее энергоёмкими из них являются:

  • бытовые сварочные трансформаторы;
  • электропилы, электрофуганки, зернодробилки (мощность 0,3…3 кВт);
  • электропечи типа "Россиянка", "Мечта" мощностью до 2 кВт;
  • электроутюги (мощность 850…1000 Вт).

Особо хочу остановиться на эксплуатации бытовых сварочных трансформаторов. Их подключение к автономному источнику электроэнергии наиболее желательно, т.к. при работе от промышленной сети они создают целый ряд неудобств для других потребителей электроэнергии.

Если бытовой сварочный трансформатор рассчитан на работу с электродами диаметром 2…3 мм, то его полная мощность составляет примерно 4…6 кВт, мощность асинхронного генератора для его питания должна быть в пределах 5…7 кВт. Если бытовой сварочный трансформатор допускает работу с электродами диаметром 4 мм, то в самом тяжелом режиме - "резки" металла, потребляемая им полная мощность может достигать 10…12 кВт, соответственно мощность асинхронного генератора должна находиться в пределах 11…13 кВт.

В качестве трёхфазной батареи конденсаторов хорошо использовать так называемые ком-пенсаторы реактивной мощности, предназначенные для улучшения соsφ в промышленных осветительных сетях. Их типовое обозначение: КМ1-0,22-4,5-3У3 или КМ2-0,22-9-3У3, которое расшифровывается следующим образом. КМ - косинусные конденсаторы с пропиткой минеральным маслом, первая цифра-габарит (1 или 2), затем напряжение (0,22 кВ), мощность (4,5 или 9 квар), затем цифра 3 или 2 означает трёхфазное или однофазное исполнение, У3 (умеренный климат третьей категории).

В случае самостоятельного изготовления батареи, следует использовать конденсаторы типа МБГО, МБГП, МБГТ, К-42-4 и др. на рабочее напряжение не менее 600 В. Электролитические конденсаторы применять нельзя.

Рассмотренный выше вариант подключения трёхфазного электродвигателя в качестве генератора можно считать классическим, но не единственным. Существуют и другие способы, которые так же хорошо зарекомендовали себя на практике. Например, когда батарея конденсаторов подключается к одной или двум обмоткам электродвигателя-генератора.

Двухфазный режим асинхронного генератора.

Рис.2 Двухфазный режим асинхронного генератора.

Такую схему следует использовать тогда, когда нет необходимости в получении трёхфазного напряжения. Этот вариант включения уменьшает рабочую ёмкость конденсаторов, снижает нагрузку на первичный механический двигатель в режиме холостого хода и т.о. экономит "драгоценное" топливо.

В качестве маломощных генераторов, вырабатывающих переменное однофазное напряжение 220 В, можно использовать однофазные асинхронные короткозамкнутые электродвигатели бытового назначения: от стиральных машин типа "Ока", "Волга", поливальных насосов "Агидель", "БЦН" и пр. У них конденсаторная батарея может подключаться параллельно рабочей обмотке, либо использовать уже имеющийся фазосдвигающий конденсатор, подключенный к пусковой обмотке. Емкость этого конденсатора, возможно, следует несколько увеличить. Его величина будет определяться характером нагрузки, подключаемой к генератору: для активной нагрузки (электропечи, лампочки освещения, электропаяльники) требуется небольшая емкость, индуктивной (электродвигатели, телевизоры, холодильники) - больше.

Рис.3 Маломощный генератор из однофазного асинхронного двигателя.

Теперь несколько слов о первичном механическом двигателе, который будет приводить во вращение генератор. Как известно, любое преобразование энергии связано с её неизбежными потерями. Их величина определяется КПД устройства. Поэтому мощность механического двигателя должна превышать мощность асинхронного генератора на 50…100%. Например, при мощности асинхронного генератора 5 кВт, мощность механического двигателя должна быть 7,5…10 кВт. С помощью передаточного механизма добиваются согласования оборотов механического двигателя и генератора так, чтобы рабочий режим генератора устанавливался на средних оборотах механического двигателя. При необходимости, можно кратковременно увеличить мощность генератора, повышая обороты механического двигателя.

Каждая автономная электростанция должна содержать необходимый минимум навесного оборудования: вольтметр переменного тока (со шкалой до 500 В), частотомер (желательно) и три выключателя. Один выключатель подключает нагрузку к генератору, два других - коммутируют цепь возбуждения. Наличие выключателей в цепи возбуждения облегчает запуск механического двигателя, а также позволяет быстро снизить температуру обмоток генератора, после окончания работы - ротор невозбужденного генератора еще некоторое время вращают от механического двигателя. Эта процедура продлевает активный срок службы обмоток генератора.

Если с помощью генератора предполагается запитывать оборудование, которое в обычном режиме подключается к сети переменного тока (например, освещение жилого дома, бытовые электроприборы), то необходимо предусмотреть двухфазный рубильник, который в период работы генератора будет отключать данное оборудование от промышленной сети. Отключать надо оба провода: "фазу" и "ноль".

В заключение несколько общих советов.

1. Генератор переменного тока является устройством повышенной опасности. Применяйте напряжение 380 В только в случае крайней необходимости, во всех остальных случаях пользуйтесь напряжением 220 В.

2. По требованиям техники безопасности электрогенератор необходимо оборудовать заземлением.

3. Обратите внимание на тепловой режим генератора. Он "не любит" холостого хода. Снизить тепловую нагрузку можно более тщательным подбором емкости возбуждающих конденсаторов.

4. Не ошибитесь с мощностью электрического тока, вырабатываемого генератором. Если при работе трёхфазного генератора используется одна фаза, то её мощность будет составлять 1/3 общей мощности генератора, если две фазы - 2/3 общей мощности генератора.

5. Частоту переменного тока, вырабатываемого генератором, можно косвенно контролировать по выходному напряжению, которое в режиме "холостого хода" должно на 4…6 % превышать промышленное значение 220/380 В.


Карманный фонарик стал предметом снаряжения каждого туриста. Да вот беда - энергию батареек приходится экономить. Но ведь можно взять с собой электростанцию. Весит она почти столько же, сколько запасная батарейка напряжением 4,5 В, да и места в рюкзаке займет ненамного больше. Подскажем: электрогенератор нашей самодельной походной электростанции - практически любой микроэлектродвигатель постоянного тока с возбуждением от постоянных магнитов, а источник энергии - ветер.

Походная электростанция

Принцип действия самодельной походной электростанции - мини-генератора показан на рисунке 1. Генератор тока с пропеллером укреплен на шесте. От генератора идут провода к лампочке. Пропеллер автоматически «следит» за ветром с помощью флюгера - «хвоста». Задача в том, как сделать электростанцию максимально простой и легкой. Нужно также, чтобы она легко разбиралась на части, а основные узлы можно было бы отремонтировать или сделать заново из подручных средств прямо в походе.

Начнем с генератора. Проще всего достать микроэлектродвигатели московского завода «Юный техник» типа ДП-1 или МДП-1. Приобретая их в магазине, постарайтесь выбрать те, ротор которых легче вращается. Самая миниатюрная электростанция получится, если использовать микроэлектродвигатели типа КМ УШ-а-38, которые выпускаются в Германии и продаются у нас в качестве запчастей к моделям железных дорог. А если у вас есть возможность применить микроэлектродвигатели типа ПД-3 (любой серии), электростанция получится наиболее мощной. Правда, эти двигатели самые тяжелые из всех названных. Основные размеры всех перечисленных двигателей приведены на рисунке 2.

Для вращения генератора нужен пропеллер. Вариантов его конструкции множество. Однако для походных условий предпочтителен пропеллер, который можно легко снимать с вала генератора, или со складывающимися лопастями. Снимающийся пропеллер изображен на рисунке 3.

Он изготавливается из донышка консервной банки. В центр впаивается бобышка, выточенная на токарном станке. В бобышке сверлится отверстие и нарезается резьба под винт МЗ. Угол наклона лопастей - около 30°. Число лопастей - от 8 до 12.

Наиболее простая конструкция со складными лопастями представлена на рисунке 4. Лопасти изготовлены из проволоки, например пружинной, марки ОВС, диаметром 1-1,5 мм и обернуты фольгой. Заостренные концы проволоки воткнуты в заранее проколотые в резиновой пробке-бобышке отверстия. Угол наклона лопасти такой же, как и в первой конструкции. Центральное отверстие в бобышке лучше всего высверлить дрелью или на токарном станке. На вал электродвигателя следует припаять трубочку подходящего диаметра длиной 20-25 мм. Отверстие в бобышке высверлите сверлом диаметром на 0,5-1 мм, меньшим наружного диаметра трубочки. Таких лопастей нужно сделать с запасом, штук пять, что позволит менять характеристику пропеллера в зависимости от силы ветра. Если вы забудете лопасти дома, не отчаивайтесь. Их можно выстругать из подходящего куска дерева (рис. 4а) или даже использовать вместо них перья крупных птиц.

Ветер, как правило, капризен и частенько меняет направление. Поэтому дополните комплект деталей еще одной - флюгером. Его конструкции изображены на рисунках 1 и 5.

В дощечке (рис. 5) длиной 200-300 мм сделайте паз по размерам электродвигателя. Двигатель крепится в нем проволокой, бечевкой или резинками от аптечных склянок. Как можно ближе к двигателю в центре дощечки просверлите отверстие. Здесь на штыре из проволоки с заостренным концом флюгер будет укреплен на шесте. Для улучшения его вращения вставьте в отверстие трубочку длиной 30-50 мм. На конец дощечки вбейте гвоздь. К нему прикрепите «хвост»: носовой платок, длинную ленточку или мочало, как у воздушного змея.

Электростанция готова. При необходимости электростанцию можно заставить работать и на ходу. Правда, в таком случае лучше пользоваться лампочкой на 1,5 В. Она будет гореть достаточно ярко даже в безветренную погоду, если идти быстрым шагом.

Найдется карманной электростанции дело и дома. Заменив лампочку амперметром постоянного тока на 1-1,5 А или вольтметром на 3-5 В, вы получите устройство для измерения скорости ветра. Правда, для этого вам придется отградуировать шкалу показаний.

Все материалы раздела «Идеи мастеру»

Главная → Электричество → Самодельные небольшие ветрогенераторы →

вторая часть установка ветряка, показания и электроника

Мини ветрогенератор из мтора на постоянных магнитах

На построение этого ветрогенератора меня подтолкнула одна из попавшихся публикаций о самодельных ветрогенераторах.

Из этой статьи я понял, что в построении небольшого ветряка нет ничего особо сложного, главное желание. Идея обеспечить себя автономным источником энергии витала в моей голове уже давно, а посмотрев на опыты других я принял решение о постройке собственного ветрячка.

Подобные ветрогенераторы часто мастерили на основе небольших моторов постоянного тока, от всяких сканеров, приводов, и я решил повторить эти довольно удачные опыты.

По цене подобный ветрогенератор обойдтся не более чем в 2-5т.рублей, основная цена это электромотор, который будет использоваться в качестве генератора. При экономном расходе вы сможете генерировать 50…250 Вт, что значительно дешевле, чем панели солнечных батарей аналогичной мощности.

Вот, для тех, кому это интересно, мой рассказ о том, как я построил генератор.

Для постройки подобных ветряков не нужно специальных инструментов, а достаточно того, что есть практически у каждого в гараже или кладовке. Для изготовления своей конструкции мне понадобились только дрель, и лобзик, которым я вырезал лопасти, ну и другая мелочь (ключики, болтики,линейка, рулетка, карандаш и т.п) в общем то, что обычно есть в наличие или преобретается в магазине за небольшие деньги.

Сам я распологаю очень скромным бюджетом, поэтому решил сделать как можно более дешовый ветрогенератор, поэтому искал самые простые и доступные пути при построении своего ветрячка.

Для постройки по максимуму использовал материалы имевшиеся в наличие и волявшиеся без дела на моём участке.

П й П ф В изготовлении лопастей ничего сложного нет.

Как сделать мини ветрогенератор своими руками?

Обычно труба делится на три равные части вдоль, и распиливается. Такой материал достаточно хорошо пилится и его можно распилить даже ножовкой по дереву, но у меня в наличие имелся электролобзик, что облегчило задачу, хотя так-же часто пилят и полотнами по металлу.

Чтобы закрепить его на валу я использовал переходник, это специальная насадка для крепления дисков на вал.

В диске предварительно разметив просверлил отверстия для болтиков крепления лопастей и собрал всё в единую конструкцию, ниже вы видите что у меня получилось. Я считаю что получилось удачно, надёжно, просто и аккуратно.

Далее надо было генератор на чём-то закрепить и для этого я использовал отрезок квадрата. С креплением ни стал замарчиваться, а просто притянул генератор к балке хамутами, дополнительно обернув его кожухом из отрезка ПВХ трубы.

>

>

>

>

Хвост вырезал из алюминиевого листа, а для крепления в балке прорезал вдоль две линии, в которые вставляется хвост и через просверленые отверстия закрепляется на болтики.В качестве поворотной оси использовал отрезок трубы и флянец, который прикрутил к балке предварительно просверлив отверстия.

Ниже фотография почти готового ветрогенератора, осталось соорудить мачту и поднять на ветер.

>

>

>

По ходу сборки все части сразу окрашивал автомобильной краской в боллончиках.

Мачту собрал из водопроводных труб используя готовые переходники, это позволило существенно облегчить процесс сборки не прибегая к сварке или сверлению на болты.В процессе сборки работал как слесарь арудуя разводными ключами, будто собирая водопроводный узел.

В итоге получилась вот такая довольно прочная и надёжная мачта.

Ветрогенераторы из автомобильных генераторов

>

Ветряк из авто-генератора с двойным статором

Ветрогенератор от «Мото26», сделан из автомобильного генератора с двойным статором. Ветряк сделан для работы на акб 24 вольт, мощность в итоге 300ватт при ветре 9м/с. Подробности и фото в статье.

>

Ветрогенератор своими руками

Практически полностью самодельный ветрогенератор, генератор которого изначально должен был быть из автомобильного генератора, но после того как корпус был сломан от генератора остался только статор, а корпус пришлось делать новый. >

Ветрогенератор из авто-генератора от Бычка

Генератор этого ветряка сделан из автомобильного генератора от гзузовика Бычек.

Статор перемотан проводом 0,6 мм. Ротор полностью новый, был выточен у токоря по нужным размерам под купленные магниты 30*10*5мм. >

Простая передлка автомобильного генератора

Самая простая переделка автомобильного генератора на постоянные магниты.

Генератор для этого ветряка делался из автогенератора, статор которого не подвергался изменениям, а вот ротор был оснащен неодимовыми магнитами. >

Генератор для ветряка из авто-генератора

Как просто и без особых усилий переделать автогенератор для самодельного ветрогенератора. Для переделки не-надо ни перематывать статор, не точить роторе под магниты.

Вся переделка сводится к переключению фаз генератора, и оснащению ротора маленькими магнитиками для самовозбуждения ротора. >

Однолопастной винт для ветрогенератора

В продолжении усовершенствования ветрогенератора на этот раз было решено попробовать изготовить однолопастной винт и посмотреть какие приимущества он дает и какие недостатки присущи однолопастным винтам.

Лопасть с противовесом имеет не жесткое крепление и может откланяться от оси вращения до 15 градусов. >

Ветрогенератор из тракторного генератора Г700

В этом ветрогенераторе в качестве генератора использован тракторный генератор с электровозбуждением.

Изготовим электрогенератор своими руками

Генератор подвергся существенным изменениям, был перемотан статор более тонким проводом, а так-же домотала катушка ротора. Для этого ветряка винт был сделан из дюралюминия. Винт двухлопастной размахом 1,3м. >

Самодельный ветрогенератор для яхты

Самодельный ветрогенератор, генератор которого сделан из генератора мотоцикла ИЖ юпитер, Этот ветрогенератор специально создавался для эксплуатации на небольшой яхте, где должен был обеспечивать питанием навигационные приборы и мелкую электронику.

>

Новый-второй ветрогенератор для яхты

В новом ветрогенераторе использовался статор от автомобильного генератора . Мощность нового ветряка теперь больше, диаметр винта также увеличился.

Теперь ветрогенератор имеет новую защиту от сильного ветра, теперь винт не уходит в сторону, а опрокидывается, и хвост теперь не складывается, в общем подробности в статье.

>

Ветряки цветы из велосипедных динамок

Иньтересные и красивые ветряки, генераторы которых это велосипедные динамо втулки. Сделаны они в виде всяких цветов, подсолнухов, ромашек, и окрашены в соответствующие цвета, красиво смотрятся как элемент дизайна.

E-VETEROK.RU энергия ветра и солнца — 2013г. Почта: [email protected] Google+

Расчет и производство лезвий

Этот раздел содержит информацию о расчете и производстве ветряной турбины или винта ветровой турбины. Расчет лопастей для ветротурбин ПВХ, изготовление профилированных лопастей. Совместное вычисление мощности и скорости винта, принципы ветрового колеса и преобразование энергии ветра в механическую, а затем в электрическую. Сравнение и расчет различных типов ветрогенераторов.

>

O, винты, многослойные, вертикальные

Часто начинающие от ветрогенераторов не могут решить, какой винт им нужен, какую мощность может дать особый ветер. Какой диаметр мне нужно завинтить и сколько лопастей >

Пример расчета лезвий из труб ПВХ в таблице Excel

Программа для расчета винтов ветрогенераторов из труб из ПВХ.

Много вопросов о том, как использовать таблицу и как рассчитать лезвия. Для этого я привел примеры в статье расчета лезвий и как использовать таблицу. >

Программа для расчета лезвий

Программа для расчета пластин ПВХ. Сама программа представляет собой электронную таблицу Excel, которая отображает всю необходимую информацию для винта.

Вам нужно ввести данные в желтые поля, чтобы получить координаты лезвия, а также данные о трафике, мощности и т. Д. >

Многовинтовой пропеллер или небольшой лезвие

Я решил описать основные различия между многооборотными ветряными турбинами с небольшими лопастями.

Многие считают, что многоступенчатые пропеллеры замедленного действия имеют преимущество при низких ветрах и высокоскоростных не туманных сильных ветрах, но это не так. >

Расчет углов лезвия, скручивание

Еще раз при независимом вычислении лопастей, на этот раз мы вычисляем точный угол лопастей от ветра и требуемую скорость.

Мини-генератор с собственными руками

Рассчитайте бурение лопастей для конкретного генератора. В этой статье есть несколько факторов, влияющих на расчеты. >

Создайте ветряную мельницу и вычислите ее простыми словами

Как создать ветрогенератор, с чего начать и что начать, думая о будущем ветрогенераторе.

В этой статье я описал основные положения принципов ветрогенераторов, вертикальных и горизонтальных, без формул. >

Как сделать лезвия для ветрогенератора

Очень часто лезвия изготовлены из канализационных труб, и в то же время они делают все своими глазами, поэтому такие ломтики имеют небольшой КИЕВ. В статье представлены примеры расчета лезвий из трубки специальной программой в виде пластинки высокого давления и размеров резания для лезвия.

>

Расчет ветрового колеса, мощность ветрогенератора

Как рассчитать мощность ветрогенератора? — на самом деле, это все проще, как кажется, быть главным для понимания. Формула для расчета силы ветра, действующего на винт, плюс винт KIEV, эффективность генератора, потери в проводах, контроллер, аккумулятор.

>

Расчет труб из ПВХ

В продукте имеется много готовых, рассчитанных винтов для выбора ветровой турбины. А также расчетные таблицы. Вычисленные винты имеют все необходимые данные, включая координаты образца режущего лезвия из трубы. >

Расчет складного хвоста

Защитите ветрогенератор от сильного ветра, двигая ветровое стекло в направлении оси вращения и складывая хвост.

Таблицы вычисляют excel, а также формулы и описание принципа работы этой защиты ветровой турбины от урагана. >

Принцип работы горизонтальный и вертикальный

Принципы работы вертикальных ветрогенераторов типа Савония и горизонтальных ветровых ветров. Описание влияния ветра, а также характеристики и характеристики процессов, которые позволяют вращению ветра. >

Расчет вертикальных ветрогенераторов

Пример расчета вертикальных ветрогенераторов типа Бочка для новичков, чтобы понять, где он начинается.

В статье приведен пример общего расчета мощности и скорости ветрового колеса с 2 * 3 м >

Как сделать аэродинамическую трубу от генератора автомобиля

В статье подробно описывается процесс изготовления вентилятора из генератора автомобиля.

С тех пор, как генератор был обработан для производства винта и контроллера. Как правило, она отвечает на все основные вопросы о создании ветряных турбин своими руками.

E-VETEROK.RU Энергия ветра и солнца — 2013г. Mail: [email protected] Google+

Вертикальный ветрогенератор своими руками

Это подробное описание конструкции роторного типа ветряной турбины Savonius, я обнаружил это замечательное место здесь http://mirodolie.ru/node/2372 После прочтения материала я решил написать об этих проектах и ​​о том, как это было сделано.

Как все началось

Идея строительства ветряной турбины родилась в 2005 году, когда место было приобретено в семейном поместье Мирейоли.

Нет электричества, и все решили эту проблему по-своему, главным образом за счет солнечных коллекторов и генераторов бензина. Когда дом был построен, это было первое, что нужно было рассмотреть, и была получена солнечная панель мощностью 120 ватт. Летом он работал хорошо, но зимой его эффективность значительно снизилась, и в пасмурные дни он в настоящее время составляет 0,3-0,5 А / ч, это не подходит, как и свет, едва хватает, но Нужно было кормить ноутбук и другую небольшую электронику.

Поэтому было принято решение о строительстве ветрогенератора, который также будет использовать энергию ветра. Во-первых, возникло желание построить генератор планерного ветра. Этот тип ветра очень велик, и через некоторое время он провел в Интернете в голове и собрал много материала на компьютере на компьютере. На генераторном генераторе парусный ветер довольно дорогой, поэтому как эти небольшие ветряные турбины не построены и должны диаметр винта для ветряных турбин этого типа должен составлять не менее пяти метров.

Большой генератор ветра не мог тянуть, но он все еще хотел попытаться создать ветрогенератор, по крайней мере, немного энергии для зарядки батареи.

Горизонтальный винт турбины сразу же упал так, что они громкие, у них проблемы с изготовлением токосемных колец и защита ветряной турбины от сильного ветра, а также трудно сделать правое лезвие.

Я хотел что-то простое и медленное, я смотрел несколько видеороликов в Интернете и любил вертикальные ветрогенераторы, такие как Savonius.

Фактически, они являются аналогами режущей трубки, половина из которых выталкивается с противоположных сторон. При поиске информации была найдена более совершенная форма этих ветрогенераторов — ротора Угринского. У обычного Savonius очень мало WEUC (эксплуатация энергии ветра), как правило, всего 10-20%, а Ургинского ротора имеет более высокий WEUC, отражающий использование лопастей энергии ветра.

Ниже приведены изображения для понимания принципа робота этого ротора

>

Схема маркировки координат лезвий

>

Ротор КИЕВ Угрынский сообщил о 46% и, следовательно, не хуже горизонтальных ветрогенераторов.

Ну, упражнение показывает, что и как.

Изготовление клинков.

Перед запуском ротора первые модели были изготовлены из двух роторных банок.

Одна из классических моделей Савония и других Угринских. На моделях было замечено, что ротор Угрынский заметно работает на более высоких скоростях по сравнению с Савониусом, и решение было принято в пользу Угрынского. Было решено создать двойной ротор, один на другом с поворотом на 90 ° для достижения более четного крутящего момента и лучшего запуска.

Материалы для ротора выбраны самыми простыми и дешевыми. Лезвия изготовлены из алюминиевой фольги толщиной 0,5 мм. Три гранулы вырезаны из толщины фанеры 10 мм. Шарики были буксированы в соответствии с приведенным выше рисунком, а желобы с глубиной 3 мм были сделаны для вставки лопастей. Сборка лезвий, сделанных на небольших углах и затянутых на винтах. Кроме того, склеивающие пластины для прочности всего узла прикреплены к штифтам по краям и посередине, он оказался очень жестким и твердым.

>

>

Размер ротора составлял 75 * 160 см, а на роторных материалах — около 3600 рублей.

Производство генераторов.

До генерации генератора было много поисков окончательного генератора, но продажи на них практически не производились, и то, что вы можете заказать в Интернете, стоило больших денег. Вертикальные ветрогенераторы имеют низкие скорости и в среднем около 150-200 об / мин для этой конструкции.

Трудно найти что-то готовое для таких поворотов и не требовать множителя.

В поисках информации на форумах выяснилось, что многие генерируют генераторы и что в этом нет ничего сложного. Решение было принято в пользу собственного генератора постоянных магнитов. Основой была классическая конструкция осевого генератора на постоянных магнитах в автомобильном хабе.

Первый заказ был заказан неодимовыми магнитными шайбами ​​для этого генератора в количестве 32 штук размером 10 * 30 мм.

Пока магниты работали, были сделаны другие части генератора. Мы вычисляем все размеры статора под ротором, который состоит из двух тормозных дисков от автомобиля ВАЗ на ступице заднего колеса, обмотки намотаны.

Простой ручной инструмент предназначен для обмотки катушек. Количество катушек от 12 до 3 на фазу, поэтому генератор трехфазный.

Мини-турбина (генератор) своими руками

На дисковых роторах будет 16 магнитов, а это соотношение составляет 4/3 вместо 2/3, поэтому генератор будет медленнее и сильнее.

Простые машины изготовлены для обмоток катушек.

>

Расположение катушек статора отмечено на бумаге.

>

Заполнение статора смолой производится из фанеры. Перед поливом все катушки паяли в звезду, а провода были разрезаны по разрезанным каналам.

>

Катушки статора перед переливом.

>

Свежий статорный чулок, прежде чем заливать нижний слой, представляет собой круг из стекловолокна, а после укладки катушек и заливки эпоксидной смолы сверху, размещенной во втором круге, она предназначена для дополнительной мощности. Погружение добавляется к смоле для прочности, из которой она белая.

>

Таким образом, ту же смолу заливают водой и магниты на дисках.

>

Но уже собранный генератор, база также из фанеры.

>

После изготовления генератор немедленно промывался руками на предмет текущего напряжения. Это было связано с 12-вольтовой аккумуляторной батареей. Ручка была прикреплена к генератору и посмотрела на другую руку и повернула генератор, некоторые данные были получены. На батарее при 120 оборотах в минуту получается, что 15 вольт 3,5 А, быстрее растягивать руку, не позволяет сильного сопротивления генератора.

Максимальная погрешность — со скоростью 240 оборотов в минуту 43 вольт.

электроника

>

Диодный мост состоял из генератора, упакованного в корпус, и на корпусе были установлены два прибора: вольтметр и амперметр. Та же самая известная электроника была взята с помощью простого контроллера для него. Принцип управления прост, когда батареи полностью заряжены, контроллер подключает дополнительную нагрузку, которая потребляет всю избыточную энергию, чтобы батареи не перезаряжались.

Первый контроллер, который сливается с друзьями, недостаточно подходит, поэтому более надежный программный контроллер был объединен.

Установка ветровой турбины.

Для ветрогенератора была сильная рама из деревянных стержней 10 * 5 см.

Для надежности опорные штанги были раскопаны в земле на 50 см, и вся конструкция была дополнительно усилена расширениями, которые были прикреплены к углам, которые были вбиты в землю. Эта конструкция очень практична и быстро устанавливается, а также упрощается, чем приваривается. Поэтому было решено построить дерево, но металл дорогой, и нет необходимости включать сварку в любом месте.

>

Имеется подготовленный ветрогенератор. На этой фотографии привод генератора является прямым, а затем создается множитель, который увеличивает вращение генератора.

>

>

Привод генератора, передаточное отношение можно заменить заменой шкивов.

>

>

>

Позже генератор мультипликатора соединен с ротором.

Общая ветровая турбина производит на 50 Вт на ветре 7-8 м / с, зарядка начинается со скоростью 5 м / с, хотя она начинает вращаться на ветру 2-3 м / с, но скорость слишком мала, чтобы заряжать аккумулятор.

В будущем планируется поднять ветротурбин, как описано выше, и обработать некоторые узлы устройства, в то время как можно построить новый более крупный ротор.

Мой второй генератор ветра (от генератора автомобиля)

Для строительства второй ветровой турбины я подтолкнул к перспективам будущей жизни в стране. В коттедже я планировал построить дом, который хотел бы жить (хотя, что случилось), но не было электричества, поэтому нужно было подумать о том, как добраться и путешествовать по Интернету. Я нашел два приемлемых варианта для солнечных коллекторов или ветровых турбин Генераторы, или лучше оба, но это стоит больших денег, поэтому я решил сделать все сам.

Конечно, они не являются даже солнечными батареями, поэтому элементы для монтажных плат стоят дорого и сами создают ветряную станцию.

Моя ветряная мельница

Фото домашнего вентилятора Подготовка к строительству ветровой турбины началась с поиска подходящего генератора, который может доставлять энергию на низких скоростях.

Первое, что нужно помнить, — это генератор автомобилей, поскольку его можно найти в любом гараже. Я взял у автолюбителя аналогичный автогенератор и начал искать информацию о том, как его адаптировать к ветрогенератору. Оказалось, что не все так просто. Без перемотки и имплантации магнитов этот генератор не подходит, поскольку он работает на высоких скоростях в автомобиле, но без восстановления его можно использовать только с множителем.

Я решил не идти вперед, потому что это сложно и будет иметь большой вес головы и размер винта и заказать неодимовые магниты и сам статор. В то же время, когда я представил тему на один из форумов по ветрогенераторам, я начал составлять генератор.

Чтобы обработать ротор под магнитами, я заказал онлайн-магазин магнитов размером 20 * 5 * 5 со скоростью 48шт, а в то время как они были магнитами по почте, я начал создавать новый ротор для этой цели, решив удалить автохтонный роторный генератор, но попытаюсь выбить его из подшипников я сломал сиденье заднего подшипника, а затем изогнутый ротор пытается удалить краб из области обмотки, в общем, все сломанные, целые просто статоры.

Статор от «классического» с 36 зубцами, ширина зуба 5 мм, толщина статора 25 мм и внутренний диаметр 89 мм.

Домашний генератор

Детали для генератора для ветряной электростанции Я не искал другого генератора, но я решил сварить новый корпус статора.

Пример был сварен из стального листа толщиной 2 мм. Во-первых, поднимитесь на 2 см от основной массы статора, легче разрезать восемь углов на мельницу, чем на шарик.

Затем он разрешил две полосы шириной 1,5 см и прижал их к статорной проволоке, приваренной к восьмиугольнику, чтобы удалить прорези для установки статора, чтобы ни одна ДСП и не закрепилась в корпусе.

Затем он сделал два фланца одинаковой стали 2 мм. под 201. Подшипники и с помощью сверла, где отверстия необходимы для крепления этих фланцев с подшипниками.

Фланцы специально разработаны для центрирования ротора, поэтому можно просто сварить кольца под подшипником, но они должны быть центрированы. На фотографии для подшипников, а не на фланцах, но на кольцах, их пришлось отрезать, потому что невозможно было «точно сосредоточиться» на коленях, и я сделал фланцы.

Домашний ротор

Фото Ротор для ротора отечественного генератора Я сделал слишком много, нашел металлический стержень толщиной 12 мм, чуть ниже 201-го подшипника подшипника подшипника к крепежному винту. Под магнитами мне понадобилась металлическая втулка толщиной 76 мм, точно так же, как внутренний диаметр 89 мм ротора минус толщина магнита = 5 мм на 10 мм и щели между статором и ротором 1,5 мм = 3 мм.

Но под рукавом я нашел только часть 72-й трубки, поэтому мне пришлось изготовить стальное кольцо толщиной 2 мм, слить его и сварить, чтобы построить толщину до 76 мм.

Цилиндр на парикмахерской решил налить эпоксидную смолу, поэтому сварка не испугалась. На лесах он не позволяет Богу обернуть сварные доски. Из олова я срезал два круга ножницами по внешнему диаметру корпуса картриджа и в центре кругов под пальто. Штифт был вставлен в эти отверстия и заполнен эпоксидной смолой. Оказалось, что самовращающийся ротор I полируется при полировке на шлифовальном круге.

Да, ротор занял много времени, и это оказалось неправильным и не сосредоточенным, но я сделал это без токарных станков и сэкономил деньги.

генератор

Таким образом, генератор выглядит как слияние. Когда корпус был готов и даже окрашен, я взял статор, снял старые обмотки, и старая краска соскоблила из желобов. Прочитав форум, я пришел к выводу, что нужно сделать только трехфазный генератор, а это значит, что три фазы должны быть обернуты. Я хотел купить 200 нитей эмалированной проволоки на 0,56 мм от местных, которые двигают двигатели, но он дал мне это, потому что это грамм двести мотоциклов.

И я рад, что вернулся домой, чтобы пойти к статору.

Статор встряхивает каждую катушку прямо на зуб, так же как и случайная обмотка обмотки для меня затруднена, необходимо подготовить катушку в толкающих пазах, а если ветер прямо к зубам, он окажется хорошим и вагинальным и станет более продолжительным. В качестве изоляции используется в обычных картонных ноутбуках. Каждый зуб, включенный на 33_39, показывает провод 0,56 мм, встряхивая каждую фазу, фаза ускоряет передачу одного-двух зубов, а затем проверяет, что фаза не наматывает Koroto-li на статор и катушку вместо грязного эпоксидного лака.

Ротор с неодимовыми магнитами

Конечный ротор с герметизированным магнитом эпоксидной смолы представляет собой три фазы сопротивления 12katushek фазы 3.3 Ом. Поэтому я магнит к ротору 24polyus, так что отношение магнитов на катушках в трехфазной системе 2/3, где два магнита на трех катушках, например, если катушки имеют 18 полюсов. Сначала прикреплены к магниту ротора 24 с тем же расстоянием и заполнены эпоксидной смолой.

Собранный генератор, подключенный к фазе звезды и скрученный, вращающий скорость подсчета рук в секунду, превратился в 200об / м в генератор 13 вольт и 2A koe при 300об / м 20 вольт и 1А для батарей. Результат был приятным, но генератор прилипал магниты к зубцам статора, что предотвращает запуск винта от слабого ветра, и я решил, что наклон магнитов будет на роторе.

Преобразование ротора в магниты с конусом

Отковырять магниты и теперь будем делать с наклоном отковырять магниты, а наклон на воображаемом магните заправляется и закатывается, склеивание падает в два раза и едва заметно, но генератор потерял около 35% мощности.

Я думал, что он все уходит, и он думал о винте, но у меня все еще есть магниты, и я хочу, чтобы они делали слишком много, и мне посоветовали поставить на форум два магнита пополам, и я снова поцарапал ротор и попытался с эпоксидной смолой.

С помощью супер клея я зафиксировал магниты на полюсах и искривился.

Ротор полностью заряжен магнитами, увеличился в два раза по мощности, а адгезия была не слишком сильной, я измерил и показал 0,3 Нм. Теперь генератор начал зарядку на 120 мб / м, при 200 мб / м, напряжение холостого хода около 20В. Я снова заполнил эпоксидные магниты, и на этом генератор был закончен, я был доволен, особенно потому, что лучше, если я не сделаю этого в моем случае.

Теоретически выход генератора составляет около 100 Вт / ч при 12 м / с.

Генератор дома для ветряной мельницы

После восстановления ротора я снова тестирую генератор на напряжение и ток. Затем я начал собирать ветрогенератор, сначала я сделал поворотную ось.

Он был сделан из одного подшипника и из трубы 15-й трубки с резьбой и гайкой. Труба была заполнена эпоксидной вставкой внутри подшипника, и подшипник вылили на кусок пластиковой трубки диаметром 50 мм, чтобы ось вращения была отпущена.

Из профиля 50 * 25 мм длиной 60 см.

Внутренняя тропа. Как создать мини-генератор

Я сделал луч, на котором я отремонтировал генератор, хвост, и вырезал отверстие для фиксации поворотной оси. Дома я нашел пять метров 50-го трубопровода для наркотиков. Лопаты с первых мини-позвонков. Лезвия были сделаны из олова без расчетов, а диаметр лопастей с тремя лопастями составлял 1,6 м. Готовое лобовое стекло было прикреплено к мачте и подняло его до ветра, подключил небольшую батарею и мультиметр. Маленький ветер дул на улицу, текущий прыжок на 1А, часы, я пошел на заряд, подумал я.

На следующий день ветер был сильнее, ток достиг 3А, и разрезы лезвий не выдержали и опирались на наркотик.

Внутренний ветрогенератор

Турбины после обработки и новые лезвия из труб из ПВХ. Затем я думал о новых ножах, ищущих старые форумы и веб-сайты, есть все лезвия из труб из ПВХ, и я нашел кусок 110. Трубы вырезали три лопасти на длинные 75 см длиной расположенный на ветряной мельнице, все было круто, но усиление ветровой энергии не сильно увеличилось и достигало максимума при 5А при 12-15 м / с, затем начиналось иметь дело с ножами и подрывать мощность ветряной турбины.

Форум нашел расчеты болтов из ПВХ, посмотрел, как были сделаны углы ветра и разрезаны новые лезвия. Результат был лучше, но не очень, со слабым ветром, также около 2А, но с сильным до 7А.

Вообще говоря, ветряная мельница оказалась слабой, чего я ожидал, но она работала, и это был первый заряд на небольшой батарее 9А / ч, после чего я положил аккумулятор на 60А / ч. Генератор ветров начинается с ветра около 4 м / с и дает заряд около 1 А, при небольшом усилии 2-3 А и сильном ветре до 8А, то есть 100 Вт / ч и в среднем 20-30 Вт / ч, немного, но неплохо для меня.

Позже я сделал ему новый трехрежущий винт диаметром 1,7 м от 160-й трубки, с помощью которого он дал до 11А на 12-вольтовой батарее, то есть до 140 Вт / ч. Вот почему я попытался установить 24-вольтовую батарею, ток в сильном ветре достиг 12А, то есть до 280 Вт / час и в среднем равен 20-30 Вт / ч.

Так и появился мой другой, сильнее, чем первый генератор ветра. Этот ветрогенератор более двух месяцев обеспечил меня светодиодным освещением и портативным телевизором с нетбуком и другими меньшинствами, заряжающими телефон и тому подобное. Но у нас низкие ветры, средний годовой уровень составляет всего 2,4 м / с, и часто в заданные времена Земли батарею нужно высаживать, поэтому мне пришлось построить еще один ветрогенератор, но об этом в следующей статье.

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...