Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Прозрачный телевизор панасоник. Первый в мире прозрачный телевизор от Panasonic

Почему наш мир выглядит именно так, а не иначе? Как он на самом деле устроен? Почему в нем случается то, что мы называем чудесами, и почему не всегда работают физические законы? Можно ли научиться управлять реальностью и событиями, которые происходят вокруг нас? Имеется только одна теория, которая все это объясняет: так называемого материального мира попросту не существует.

Что было, когда ничего не было

Над происхождением Вселенной люди задумывались еще в древности. Богословы считали, что она создана Творцом за несколько тысяч лет до нашей эры. Но археологические и палеонтологические находки доказывают, что Земле и жизни на ней по меньшей мере миллионы лет. Гораздо ближе к истине, по-видимому, оказался Аристотель, утверждавший, что Вселенная не имеет ни начала, ни конца и будет существовать вечно…

Долгое время Вселенную считали статичной и неизменной, но в 1929 году американский астроном Эдвин Хаббл обнаружил, что она постоянно расширяется. Следовательно, она не существовала всегда, а возникла в результате каких-то процессов, рассудил он. Так появилась теория Большого взрыва, который миллиарды лет назад породил звезды и галактики. Но если до Большого взрыва ничего не существовало, то что же к нему привело?

В 1960 году физик Джон Уилер разработал теорию «пульсирующей Вселенной».

Согласно ей, Вселенная неоднократно проходила через циклы расширения и обратного сжатия, то есть таких Больших взрывов было за весь период ее истории по крайней мере несколько. Еще одна теория подразумевает наличие протовселенной: сначала должна была появиться материя, а потом уже прогремел Большой взрыв.

Наконец, имеется гипотеза появления Вселенной из квантовой пены, на которую воздействуют колебания энергии. «Пенясь», квантовые пузырьки «раздуваются» и порождают новые миры. Но это опять же не объясняло главного: что существовало до образования какой-либо материи?

Научный парадокс попытались разрешить известные астрофизики Джеймс Хартл и Стивен Хокинг, в 1983 году предложив очередную теорию. Она гласила, что Вселенная не имеет границ и ее структура основана на так называемой волновой функции, определяющей различные квантовые состояния частиц материи. Это делает возможным существование множества параллельных Вселенных с различным набором физических констант.

Нефизическая картина мира

Основной недостаток всех научных моделей формирования Вселенной заключается в том, что до сих пор они строились на так называемой физической картине мира. Но ведь могут иметься и другие миры! Миры, где законы физики не работают.

Мы привыкли, что нас окружает материя − объективная реальность, данная нам в ощущениях. А ведь ощущения-то у каждого свои, индивидуальные! Вспомним того же Платона, который считал, что есть мир идей (эйдосов), а материя суть всего лишь проекция этих идей… Вот мы и подошли к самому главному: нас окружает вовсе не материя, а идеи, образы!

Рассмотрим феномен аутизма. Ребенок, рождаясь, воспринимает окружающий мир именно в виде образов и ощущений, а не в виде совокупности объектов. Со временем он учится видеть мир как целостную картину, устанавливать связи между различными предметами и понятиями.

Аутисты же могут воспринимать действительность, но не могут ее анализировать.

Зато они способны усваивать огромное количество «первичной» информации, что недоступно большинству из нас.

Так, шведка Ирис Юханссон, которая, страдая аутизмом, тем не менее смогла адаптироваться в «нормальном» мире и даже получить профессию педагога и психолога, способна чувствовать так называемую «жизненную энергию». В детстве, живя в крестьянской семье, где держали коров, она всегда видела, кому из телят не суждено выжить.

В юности Ирис работала в парикмахерской и научилась, делая женщинам прически, восстанавливать энергетический потенциал клиенток, если тот был истощен. Клиентки выходили из парикмахерской, ощущая необыкновенный прилив сил. Благодаря этому Ирис стала очень популярным мастером. Обычные же люди на такие чудеса не способны.

Доказательства иллюзии

А как же магия и религия? Восточные философы убеждены, что материальный мир – это иллюзия, майя. Древние славяне делили мир на Явь, Навь и Правь: мир материи, мир духов и мир Высшего Начала, управляющего реальностью. А что, если при помощи определенных ритуалов мы можем воздействовать на реальность?

Любой экстрасенс скажет вам, что при наведении порчи или нетрадиционном лечении человека воздействие идет на уровне энергетики. Но вот конкретный механизм того, что в этот момент происходит, вам не объяснит даже самый продвинутый маг. Ему известно только, что для получения определенного результата нужно провести определенный ритуал.Маг ведь работает с идеями, а не с физической картиной мира.

Каким же образом заставить идеи работать на вас? Прежде всего, вы должны осознать тот факт, что существуют параллельные реальности, количество которых, возможно, стремится к бесконечности. И они не «где-то там», а окружают нас. Только мы не замечаем процесса «перехода» из одной реальности в другую. Или замечаем, но воспринимаем это как чудо. Скажем, какая-то вещь исчезла, а потом опять появилась.

Видя что-то необычное, мы тут же принимаем видение за галлюцинацию, в то время как, скорей всего, нам удалось заглянуть в один из многочисленных параллельных миров. Кстати, мы привыкли воспринимать реальность как нечто устойчивое и упорядоченное, но люди с некоторыми мозговыми нарушениями способны видеть ее такой, какова она на самом деле, что обычно воспринимается нами как бред и дает повод покрутить пальцем у виска.

Феномен материализации

Некогда блестящий физик, занимающийся квантовой механикой, Хью Эверетт предположил, что любая мысль или действие приводит к выбору, который формирует так называемую реальность. В то же время «нереализованные» варианты продолжают существовать как бы параллельно.

Например, вы поехали одной дорогой, попали в пробку и опоздали на собеседование по поводу работы, вследствие чего ее не получили. Поехали другой – прибыли на место вовремя, и собеседование прошло успешно. Можно ли «перешагнуть» с одной «ветки» из множества реальностей на другую? Вот этим мы и занимаемся, когда пытаемся наладить свою жизнь.

Очень хорошо это проиллюстрировал Вадим Зеланд в серии своих книг «Трансерфинг реальности». Он поясняет, почему сильные желания часто не сбываются. Если мы чего-то очень сильно хотим, то возникает избыточный потенциал, и реальность начинает восстанавливать равновесие. Недаром существует поговорка: «Хочешь рассмешить Бога – расскажи ему о своих планах».

В последние годы возник ажиотаж вокруг системы Симорон. В сущности, нам предлагается вариант так называемого позитивного мышления, но с использованием различного рода ритуальных действ. Как это работает? Человек «расшатывает» границы привычной картины мира (симоронисты называют ее ПКМ) и попадает на ту «волну», которая для него более желательна.

Например, симоронисты призывают почаще прыгать в другой мир. Как? Очень просто – спрыгнуть со стула или кровати, сказав себе: прыгаю за новой работой, за новой квартирой, за своей половинкой и так далее.

Материя против хаоса

Но зачем же нам тогда вообще объективная реальность? Не лучше ли пребывать в мире иллюзий, раз ими можно манипулировать как угодно?

Дело в том, что материальный мир − это своего рода защита от хаоса. Представьте, что вы находитесь на крохотном островке посреди бескрайнего моря. У вас, по крайней мере, твердая почва под ногами, а если вы броситесь в волны, то они понесут вас неведомо куда.

Скорее всего, когда-то люди действительно видели мир таким хаотичным, каким он является на самом деле. И сами создали так называемую физическую реальность, чтобы избежать нежелательных метаморфоз. В сущности, подобная теория объясняет все: и НЛО, и появление призраков, и телепатию, и ясновидение… Ведь в «истинном» мире не существует границ, и в нем может происходить все что угодно.

Но если наш мир иллюзорен, то должно быть некое первичное начало, породившее его. В этом и заключается загадка Бога. Если все это действительно обстоит так, то кто же создал его самого? Вряд ли найдется хотя бы один ученый или философ, который сможет ответить на этот вопрос, так как, скорее всего, нашему ограниченному сознанию попросту не дано осмыслить ответ.

2.2. Расширяется ли Вселенная на самом деле?

Размышляя над всей этой историей, я исходил из предпосылки, что истиной, какой бы невероятной она ни казалась, является то, что останется, если отбросить все невозможное. Не исключено, что это оставшееся допускает несколько объяснений. В таком случае необходимо проанализировать каждый вариант, пока не останется один, достаточно убедительный.

Артур Конан Дойл

Почему все так уверены, что Вселенная действительно расширяется? В научной литературе реальность расширения уже почти не обсуждается, так как профессиональные ученые, знающие проблему во всей ее полноте, в этом практически не сомневаются. Активные обсуждения этого вопроса часто вспыхивают на разного рода интернет-форумах, где представители так называемой «альтернативной науки» (в противовес «ортодоксальной») снова и снова пытаются «изобрести велосипед» и найти другое, не связанное с удалением объектов, объяснение наблюдаемому в спектрах галактик красному смещению. Такие попытки, как правило, основаны на незнании того, что, помимо красного смещения, есть и другие свидетельства в пользу реальности космологического расширения. Строго говоря, стационарность Вселенной была бы гораздо большей проблемой для науки, чем ее расширение!

Современная наука представляет собой плотно сотканную ткань взаимосвязанных результатов или, если угодно, постоянно строящееся здание, из основания которого уже нельзя вытащить ни один из кирпичей без того, чтобы все здание не рухнуло. Расширение Вселенной и созданная на его основе картина строения и эволюции Вселенной и составляющих ее объектов – один из таких базовых результатов современной науки.

Но сначала несколько слов о недоплеровской интерпретации красного смещения. Вскоре после открытия зависимости z от расстояния возникла – и это вполне естественно – идея, что красное смещение может быть связано не с удалением объектов, а с тем, что по пути от далеких галактик часть энергии фотонов теряется и, следовательно, длина волны излучения увеличивается, оно «краснеет». Приверженцами такой точки зрения были, к примеру, один из основоположников астрофизики в России А. А. Белопольский, а также Фриц Цвикки – один из самых нестандартно мыслящих и плодотворных астрономов XX века. К подобному объяснению z время от времени склонялся и сам Хаббл. Вскоре, однако, выяснилось, что подобные процессы потери энергии фотонами должны сопровождаться размыванием изображений источников (чем дальше галактика, тем сильнее размытие), что не наблюдалось. Другой вариант этого сценария, как было показано советским физиком М. П. Бронштейном, предсказывал, что эффект покраснения должен быть разным в разных частях спектра, то есть он должен зависеть от длины волны. К началу 60-х годов XX века развитие радиоастрономии закрыло и эту возможность – для данной галактики величина красного смещения оказалась не зависящей от длины волны. Знаменитый советский астрофизик В. А. Амбарцумян еще в 1957 году резюмировал ситуацию с разными вариантами интерпретации красного смещения таким образом: «Все попытки объяснить красное смещение каким-либо механизмом, отличным от принципа Доплера, окончились неудачей. Эти попытки вызывались не столько логической или научной необходимостью, сколько известным страхом… перед грандиозностью самого явления…».

Рассмотрим теперь несколько наблюдательных тестов, поддерживающих картину глобального космологического расширения Вселенной. Первый из них был предложен еще в 1930 году американским физиком Ричардом Толменом. Толмен обнаружил, что так называемая поверхностная яркость объектов будет вести себя по-разному в стационарной и в расширяющейся Вселенной.

Поверхностная яркость – это просто энергия, излучаемая единицей площади объекта в единицу времени (например, за секунду) в каком-нибудь направлении или, более точно, в единице телесного угла. В стационарной Вселенной, в которой причиной красного смещения является какой-то неизвестный закон природы, приводящий к уменьшению энергии фотонов по пути к наблюдателю («старение» или «усталость» фотонов), поверхностная яркость объекта должна уменьшаться пропорционально величине 1 + z . Это означает, что, если галактика находится на таком расстоянии, что для нее z = 1, то она должна выглядеть в два раза тусклее по сравнению с такими же галактиками вблизи нас, то есть при z = 0.

В расширяющейся Вселенной зависимость яркости (имеется в виду болометрическая, то есть полная, просуммированная по всему спектру, яркость) от красного смещения становится гораздо сильнее – она спадает как (1 + z )4. В этом случае объект с z = 1 будет выглядеть уже не в 2, а в 16 раз более тусклым. Причиной столь сильного падения яркости является то, что, помимо уменьшения энергии фотонов из-за красного смещения, при реальном удалении галактик начинают работать дополнительные эффекты. Так, каждый новый фотон, испускаемый далекой галактикой, будет добираться до наблюдателя с все большего расстояния и тратить на дорогу все большее время. Интервалы между приходами фотонов возрастут и, значит, за единицу времени на приемник излучения будет попадать меньше энергии и наблюдаемая нами галактика будет казаться слабее. Кроме того, в случае реального расширения зависимость углового размера галактики от z будет другой, чем для стационарной Вселенной, что также приводит к изменению ее наблюдаемой поверхностной яркости.

Тест Толмена выглядит очень простым и наглядным – действительно, достаточно взять два сходных объекта на разных красных смещениях и сравнить их яркости. Однако технические сложности его осуществления таковы, что применить этот тест смогли лишь относительно недавно – в девяностых годах XX века. Сделал это ученик и последователь Хаббла знаменитый американский астроном Алан Сендидж . Совместно с разными коллегами Сендидж опубликовал целую серию статей, в которых он рассмотрел тест Толмена для далеких эллиптических галактик.

Эллиптические галактики примечательны тем, что они относительно просто устроены. В первом приближении их можно представить как гигантские конгломераты родившихся практически одновременно звезд, имеющие сглаженное, без каких-либо особенностей, крупномасштабное распределение яркости (ярчайшие галактики на рис. 16 относятся как раз к этому типу). У эллиптических галактик существует простое эмпирическое соотношение, связывающие воедино их основные наблюдательные характеристики – размер, поверхностную яркость и разброс скоростей звезд вдоль луча зрения. (При определенных допущениях это соотношение является следствием предположения об устойчивости эллиптических галактик.) Разные двумерные проекции этой трехпараметрической зависимости также показывают хорошую корреляцию например, существует зависимость между размером и яркостью галактик. Значит, сравнивая эллиптические галактики одного характерного линейного размера на разных z, можно реализовать тест Толмена.

Примерно так и действовал Сендидж. Он рассмотрел несколько скоплений галактик на z ~ 1 и сравнил поверхностные яркости наблюдаемых в них эллиптических галактик с данными для подобных галактик вблизи нас. Для корректности сравнения Сендиджу пришлось учесть ожидаемую эволюцию яркостей галактик за счет «пассивной» эволюции составляющих их звезд, однако эта поправка в настоящее время определяется вполне надежно. Результаты оказались однозначными – поверхностная яркость галактик изменяется пропорционально 1/(1 + z )4 и, следовательно, Вселенная расширяется. Модель стационарной Вселенной со «стареющими» фотонами не удовлетворяет наблюдениям.

Еще один интересный тест был также предложен очень давно, а реализован лишь относительно недавно. Фундаментальным свойством расширяющейся Вселенной является кажущееся замедление времени у далеких объектов. Чем дальше от нас в расширяющейся Вселенной находятся часы, тем медленнее, как нам кажется, они идут – на больших z длительность всех процессов кажется растянутой в (1 + z ) раз (рис 22). (Этот эффект подобен релятивистскому замедлению времени в специальной теории относительности.) Поэтому, если найти такие «часы», которые можно наблюдать на больших расстояниях, то можно непосредственно проверить реальность расширения Вселенной.

Рис. 22. Импульсы, испущенные далеким объектом на красном смещении z с интервалом в 1 секунду, доберутся до нас с интервалами 1 + z секунд.

В 1939 году американский астроном Олин Вилсон опубликовал заметку, в которой он отметил удивительное постоянство формы кривых блеска сверхновых звезд (см. пример кривой блеска сверхновой Тихо Браге на рис. 4, а также рис. 23) и предложил использовать эти кривые в качестве «космологических часов». Вспышка сверхновой – это один из самых мощных катастрофических процессов во Вселенной. В ходе такой вспышки звезда со скоростью ~ 104 км/с сбрасывает оболочку с массой, сравнимой с массой Солнца. При этом звезда становится ярче в десятки миллионов раз, и в максимуме блеска она способна затмить всю галактику, в которой она вспыхнула. Столь яркий объект, естественно, виден на очень больших, космологических расстояниях. Как можно использовать кривые блеска сверхновых в качестве «часов»? (Их можно использовать и в качестве «стандартной свечи», но об этом я расскажу чуть позже.) Во-первых, не все сверхновые одинаковы по своим наблюдательным проявлениям и по кривым блеска. Их делят на два типа (I и II), а те в свою очередь подразделяют на несколько подтипов. В дальнейшем мы будем обсуждать только кривые блеска сверхновых типа Ia. Во-вторых, даже у этого типа звезд кривые блеска на первый взгляд выглядят очень разнообразными и совсем не очевидно, что с ними можно сделать. Например, на рисунке 23 показаны наблюдаемые кривые блеска нескольких близких сверхновых типа Ia. Эти кривые довольно сильно отличаются: например, светимости показанных на рисунке звезд в максимуме блеска различаются почти в три раза.

Рис. 23. Кривые блеска SN Ia: на верхнем рисунке показаны наблюдаемые кривые, на нижнем они сведены в одну с учетом корреляции между формой кривой блеска и светимостью сверхновой в максимуме. По горизонтальной оси отложены дни после максимума блеска, по вертикальной – абсолютная звездная величина (мера светимости). По данным проекта Calan-Tololo Supernova Survey

Ситуацию спасает то, что разнообразие форм наблюдаемых кривых блеска подчиняется четкой корреляции: чем ярче SN в максимуме, тем более плавно затем спадает ее яркость. Эта зависимость была открыта советским астрономом Юрием Псковским еще в 1970-х годах и позднее – уже в 1990-х – была подробно изучена другими исследователями. Оказалось, что с учетом этой корреляции кривые блеска SN Ia удивительно однородны (см. рис. 23) – например, разброс светимостей SN Ia в максимуме блеска составляет лишь около 10 %! Следовательно, изменение блеска у SN Ia может рассматриваться как стандартный процесс, длительность которого в локальной системе отсчета хорошо известна. Использование этих «часов» показало, что у далеких сверхновых (сейчас обнаружено уже несколько десятков SN с z > 1) изменения видимого блеска и спектра замедлены на множитель (1 + z ). Это является непосредственным и очень сильным аргументом в пользу реальности космологического расширения. Еще одним аргументом является согласие возраста Вселенной, получаемого в рамках модели расширяющейся Вселенной, с возрастом реально наблюдаемых объектов. Расширение означает, что с течением времени расстояния между галактиками увеличиваются. Мысленно обратив этот процесс вспять, мы приходим к выводу, что это глобальное расширение должно было когда-то начаться. Зная текущий темп расширения Вселенной (он определяется значением постоянной Хаббла) и баланс плотностей составляющих ее подсистем (обычное вещество, темная материя, темная энергия), можно найти, что расширение началось примерно 14 миллиардов лет назад. Значит, мы не должны наблюдать в нашей Вселенной объекты с возрастом, превышающим эту оценку.

Но как можно найти возраст космических объектов? По-разному. Например, с помощью радиоактивных «часов» – методами ядерной космохронологии, которые позволяют оценивать возраст объектов путем анализа относительной распространенности изотопов с большими периодами полураспада. Изучение содержания изотопов в метеоритах, в земных и лунных породах показало, что возраст Солнечной системы близок к 5 млрд лет. Возраст Галактики, в которой находится наша Солнечная система, конечно, больше. Его можно оценить по времени, которое необходимо для образования наблюдаемого в Солнечной системе количества тяжёлых элементов. Расчеты показывают, что синтез этих элементов должен был продолжаться в течение ~ 5 млрд лет до образования Солнечной системы. Следовательно, возраст окружающих нас областей Млечного Пути близок к 10 млрд лет.

Другой способ датирования Млечного Пути основан на оценке возраста составляющих его старейших звезд и звездных скоплений. Этот метод основан на теории звездной эволюции, хорошо подтвержденной разнообразными наблюдениями. Результат этого подхода – возраст различных объектов Галактики (звезд, шаровых скоплений, белых карликов и пр.) не превышает ~10–15 млрд лет, что согласуется с современными представлениями о времени начала космологического расширения.

Возраст других галактик определить, конечно, сложнее, чем возраст Млечного Пути. У далеких объектов мы не видим отдельные звезды и вынуждены изучать лишь интегральные характеристики галактик – спектры, распределение яркости и пр. Эти интегральные характеристики складываются из вкладов огромного числа составляющих галактики звезд. Кроме того, наблюдаемые характеристики галактик сильно зависят от наличия и распределения в них межзвездной среды – газа и пыли. Все эти трудности преодолимы и современные астрономы научились восстанавливать истории звездообразования, которые должны были привести к наблюдаемым в настоящее время интегральным характеристикам галактик. У галактик разных типов эти истории различны (например, эллиптические галактики возникли в ходе мощной одиночной вспышки звездообразования много миллиардов лет назад, в спиральных галактиках звезды рождаются и в настоящее время), однако не обнаружено галактик, начало звездообразования в которых превышало бы возраст Вселенной. Кроме того, наблюдается вполне определенный, ожидаемый для реально расширяющейся Вселенной, тренд – чем дальше по z мы забираемся во Вселенную, то есть переходим к все более ранним этапам ее эволюции, тем, в среднем, более молодые объекты мы наблюдаем.

Важными аргументами, поддерживающими расширение Вселенной, являются также существование реликтового излучения, наблюдаемое увеличение его температуры с ростом красного смещения, а также содержание элементов во Вселенной, но об этом я расскажу чуть позже. Закончить же свой рассказ я хочу, быть может, самым наглядным свидетельством расширения Вселенной – изображениями далеких галактик (см. пример на рис. 24).

Одними из самых эффектных результатов работы космического телескопа «Хаббл» (Hubble Space Telescope), несомненно, являются замечательные картинки разнообразных космических объектов – туманностей, звездных скоплений, галактик и пр. Наблюдениям из космоса не мешает земная атмосфера, размывающая изображения, и поэтому снимки HST примерно в десять раз более четкие, чем наземные. На этих очень четких снимках (их угловое разрешение составляет около 0.""1) в 1990-х годах впервые удалось детально рассмотреть структуру далеких галактик. Как оказалось, далекие галактики не похожи на те, что мы наблюдаем около нас. С ростом красного смещения увеличивается доля асимметричных и неправильных галактик, а также галактик в составе взаимодействующих и сливающихся систем: если при z = 0 к таким объектам можно отнести лишь несколько процентов галактик, то к z = 1 их доля возрастает до ~ 30-40 %.

Рис. 24. Фрагмент Сверхглубокого поля космического телескопа «Хаббл» (размер изображения 30"" x 30"")· Большинство видимых на рисунке галактик имеют z ~ 0.5: 1, то есть они относятся к эпохе, когда Вселенная была примерно вдвое моложе.

Почему это происходит? Простейшее объяснение связано с расширением Вселенной – в более ранние эпохи взаимные расстояния между галактиками были меньше (при z = 1 они были в два раза меньше) и, следовательно, галактики должны были чаще возмущать друг друга близкими прохождениями и чаще сливаться. Этот аргумент не является столь однозначным, как упомянутые раньше, однако он наглядно свидетельствует о вполне определенной, соответствующей картине расширяющейся Вселенной, эволюции свойств галактик со временем. Итак, расширение Вселенной подтверждается разнообразными, совершенно не связанными друг с другом, независимыми наблюдательными тестами. Кроме того, нестационарность Вселенной неизбежно возникает и при теоретических исследованиях ее структуры и эволюции. Все это позволило знаменитому советскому физику-теоретику Якову Зельдовичу еще в начале 1980-х годов заключить, что теория Большого взрыва, основой которой является расширение Вселенной, «столь же надежно установлена и верна, сколь верно, что Земля вращается вокруг Солнца. Обе теории занимали центральное место в картине мироздания своего времени, и обе имели много противников, утверждавших, что новые идеи, заложенные в них, абсурдны и противоречат здравому смыслу. Но подобные выступления не в состоянии препятствовать успеху новых теорий».


| |


Вселенная полна загадок и необъяснимых явлений. Ее огромный размер уже сам по себе является тайной. И, в конце концов, что такое Вселенная - не знает никто. В этом обзоре мы собрали самые невероятные загадки, которые и сегодня не дают покоя учёным.

1. Сколько лет Вселенной


На заре XXI века несмотря на все изобретения и научно-технический прогресс, возраст Вселенной остается загадкой. По последним оценкам экспертов, возраст Вселенной составляет 13,8 миллиардов лет.

2. Как формируются галактики


Есть очень много дискуссий о том, как сформировались галактики, но на самом деле этого никто не знает наверняка. Ученые не знают, что случилось после Большого взрыва: мелкие частицы начали медленно объединяться и постепенно образовывать звезды, звездные скопления и галактики или же Вселенная изначально представляла собой структуру в виде сгустков материи, которые позже разделились на галактики.

3. Прямоугольная галактика


Это называется “галактика в форме изумруда" и недавно она была обнаружена международной командой астрономов с Суинбернского технологического университета в Австралии. Галактика в форме драгоценного камня была обнаружена с помощью телескопа Subaru японским астрофизиком Ли Спитлером. Считается, что необычная форма является результатом столкновения двух галактик.

4. Вселенная до Большого взрыва


Существовало ли что-нибудь до Большого взрыва. Этого, наверное, люди не узнают никогда.

5. Как появилась жизнь на Земле



Ученые знают, что Земля была лишена жизни, когда сформировалась Солнечная система. Тем не менее, возникли ли первые формы жизни на Земле или в другом месте - это огромная тайна, которая является предметом серьезных научных дискуссий. Ранее ученые считали, что вся жизнь могла возникнуть спонтанно, но некоторые ученые считают, что сложные органические молекулы могли возникнуть в космосе и были занесены на Землю кометами или метеоритами.

6. Темная материя



Никто не знает точно, что такое темная материя, которой якобы 22% во Вселенной. Поскольку (предположительно) она не испускает электромагнитного излучения и не взаимодействует с ним, прямое наблюдение темной материи невозможно. Вывод о ее существовании был сделан на основании поведения астрономических объектов и гравитационных эффектов.

7. Насколько велика Вселенная


Все знают, что Вселенная является огромной. Хотя размер наблюдаемой Вселенной составляет около 13,8 млрд лет, расстояние до края наблюдаемой Вселенной составляет около 46 миллиардов световых лет. Это происходит потому, что Вселенная постоянно расширяется и постоянно становилась больше все время, пока свет шел к Земле.

8. Черные дыры



Концепция черных дыр возвращает нас к 1780-м годам, когда Джон Мичелл и Лаплас предполагали существование “темных звезд”, чья гравитация была настолько сильной, что притягивала даже световое излучение. Тем не менее, люди до сих пор много не знают о черных дырах. Например, в 2014 году ученые обнаружили галактики с тремя сверхмассивными черными дырами в центре (а ранее предполагалось, что в центре галактики может находиться только 1 черная дыра).

9. Гамма-всплески



Одной из самых больших тайн астрономии в течение последних трех десятилетий является природа гамма-всплесков (самых мощных во Вселенной выбросов энергии). Ученые могут фиксировать их и наблюдать за ними, но они до сих пор не имеют ни малейшего понятия, почему они появляются случайным образом и вообще почему они происходят.

10. Темная энергия



Согласно наиболее общепринятой теории, темная энергия должна действовать в противовес гравитации. Именно она составляет примерно 68% Вселенной и вызывает ее расширение. Во всем остальном, что это такое - полная загадка.

11. Был ли Большой взрыв



Возраст нашей Вселенной, согласно теории Эйнштейна, составляет около 13,8 млрд лет и она была сформирована из бесконечно малой точки во время Большого взрыва. Хотя большинство ученых сегодня принимают эту модель, научное сообщество до сих пор не может объяснить, что происходило в этой маленькой точке до взрыва и почему он случился.

12. Одиноки ли люди во Вселенной?

Это еще одна великая тайна, которую многие мыслители и ученые пытались решить на протяжении всей истории человеческой цивилизации, но так до сих пор и не нашли на нее ответ. Также вопросом является то, смогут ли люди вообще осознать совершенно иную жизнь - ведь может прямо сейчас за людьми наблюдает другой тип жизни, а они даже не понимают этого.

13. Зарождение жизни



Это, без сомнения, один из самых старых вопросов и самая большая загадка в истории человечества. Хотя существуют теории, которые там пытаются объяснить это сложными химическими реакциями, на самом деле ученые не имеют четкого однозначного объяснения жизни.

14. Правда ли все вокруг



С тех пор, как люди начали аналитически рассуждать, этот вопрос таится где-то в подсознании. А заключается он в следующем: является ли то, что видят люди тем, что это есть на самом деле.

15. Что такое гравитация на самом деле



Гравитация играла большую роль в создании вселенной в ее современном виде. Благодаря силе тяжести куски материи “слипались” в планеты, луны и звезды. Из-за силы тяжести, когда человек что-то роняет, то этот предмет падает вниз, а не вверх. Но что это за сила на самом деле - неизвестно. Хотя ученые могут наблюдать и понимать, как гравитация “ведет себя”, они понятия не имеют, почему она существует. Например, если сила тяжести является силой, которая заставляет все вещество притягиваться ко всем другим, почему внутри атомы представляют собой в основном пустое пространство.

И в продолжение неземной темы - невероятные .

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...