Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Загадки квантовой механики. Загадки квантовой физики

Жизнь - самый экстраординарный феномен в наблюдаемой Вселенной; но как возникла жизнь? Даже в эпоху клонирования и синтетической биологии остается справедливой замечательная истина: никому еще не удалось создать живое из полностью неживых материалов. Жизнь возникает только от жизни. Выходит, мы до сих пор упускаем какой-то из ее основополагающих компонентов? Подобно книге Ричарда Докинза «Эгоистичный ген», позволившей в новом свете взглянуть на эволюционный процесс, книга «Жизнь на грани» изменяет наши представления о фундаментальных движущих силах этого мира. В ней авторы рассматривают как новейшие экспериментальные данные, так и открытия с переднего края науки, и делают это в неповторимо доходчивом стиле. Джим Аль-Халили и Джонджо Макфадден рассказывают о недостающем компоненте квантовой механики; феномене, который лежит в основе этой самой таинственной из наук.

Книга:

<<< Назад
Вперед >>>

Мы вскоре вернемся к фотону и дереву и узнаем, как они связаны с квантовым миром, но сначала предлагаем вам рассмотреть удивительно простой эксперимент, который подчеркивает таинственность квантового мира. Пока мы прилагаем все усилия, чтобы как можно понятнее объяснить, что подразумевают такие выражения, как «квантовая суперпозиция», нет ничего нагляднее знаменитого опыта с двумя щелями, описанного ниже.

Опыт с двумя щелями наиболее просто и в полной мере показывает, что в квантовом мире все устроено по-другому. Частицы могут вести себя как волны, распространяясь в пространстве, а волны могут иногда приобретать свойства частиц. Мы уже говорили о корпускулярно-волновом дуализме: во введении он описан как особенность, благодаря которой становится понятно, как Солнце генерирует энергию; в главе 3 мы с вами разобрались в том, как волновые характеристики электронов и протонов позволяют им преодолевать энергетические барьеры в структуре ферментов. В этой главе вы узнаете, что корпускулярно-волновой дуализм также влияет на наиболее важные биохимические реакции в биосфере : превращение воздуха, воды и света в растения, микроорганизмы и - косвенно - во всех нас. Но сначала мы должны понять, как смелая идея о том, что частицы могут находиться в нескольких местах одновременно, подтверждается простейшими, изящными и в то же время наиболее масштабными экспериментами в истории: один из этих экспериментов, согласно Ричарду Фейнману, «лежит в сердце квантовой механики».

Однако должен предупредить, что описанное тут покажется вам невозможным и вы можете подумать, что должен быть более рациональный способ объяснить происходящее. Вы можете размышлять, в чем же секрет этого магического фокуса. Или вы можете прийти к выводу, что опыт представляет собой чистой воды теоретическую спекуляцию, выдуманную учеными, которым не хватило воображения, чтобы понять механизмы природы. Но ни одно из этих объяснений не является верным. Опыт с двумя щелями не имеет (здравого) объяснения, но является реальным и воспроизводился тысячи раз.

Мы опишем эксперимент в три этапа; первые два будут касаться описания условий, чтобы вы могли оценить непостижимые результаты третьей, основной, стадии.

Сначала пучок монохромного света (состоящий из волн одного цвета, то есть волн одинаковой длины) направляется на экран с двумя узкими щелями, которые позволяют некоторому количеству света пройти через обе щели на второй экран (рис. 4.1).


Рис. 4.1. Опыт с двумя щелями, стадия 1. Когда монохромный свет (имеющий определенную длину волны) направляется на две щели, каждая щель выступает в качестве нового источника света с другой стороны. Благодаря волновой природе свет распространяется (рассеивается) после прохождения через каждую щель, так что круговые волны перекрываются и взаимодействуют друг с другом, образуя темные и светлые полосы на заднем экране

Точно контролируя ширину щелей, расстояние между ними и расстояние между двумя экранами, мы можем создать последовательность светлых и темных полос на втором экране, известную как интерференционная картина.

Интерференционные картины представляют собой графики волн, их легко увидеть в любой волновой среде. Бросьте камень на гладь пруда, и вы увидите, как ряд концентрических циркулярных волн расходится от места всплеска. Бросьте два камня в один пруд, и каждый из них будет образовывать свои собственные концентрические волны. В том месте, где волны от двух камней перекрываются, вы увидите интерференционную картину (рис. 4.2).


Рис. 4.2. Конструктивная и деструктивная интерференция волн

Там, где пик одной волны встречается с минимальной точкой другой, они нейтрализуют друг друга, что приводит к отсутствию волны в этой точке. Это явление называют деструктивной интерференцией. И наоборот, там, где встречаются два пика или две минимальные точки, они усиливают друг друга, создавая двойную волну: это явление называют конструктивной интерференцией. Подобная картина угасания и усиления волн может наблюдаться в любой волновой среде. Английский физик Томас Янг продемонстрировал интерференцию пучков света в ранней версии опыта с двумя щелями, проведенного более 200 лет назад. Результат убедил его и многих других ученых в том, что свет на самом деле представляет собой волну.

Интерференция, которую мы наблюдаем в опыте с двумя щелями, в первую очередь зависит от пути, по которому волны света проходят через щель и затем распространяются - свойство волн, известное как дифракция. Таким образом, пучки, исходящие из щелей, до попадания на задний экран перекрывают и поглощают друг друга точно так же, как волны на воде. В определенных точках экрана волны света, исходящие из двух щелей, попадают в фазу, когда пики и низшие точки чередуются - либо потому, что они прошли одинаковое расстояние до экрана, либо потому, что разница в пройденном ими расстоянии кратна расстоянию между их пиками. В этом случае высшие и низшие точки волн сочетаются и образуют еще более высокие и низкие точки. Это явление называют конструктивной интерференцией. При наслаивании волн образуется свет высокой интенсивности и, следовательно, яркая полоса на экране. Но в других точках свет из двух щелей падает вне фазы и высшая точка одной волны встречает низшую точку другой. В этих точках волны нейтрализуют друг друга, что приводит к образованию темной полосы на экране, - деструктивная интерференция. Между этими двумя крайностями комбинация не попадает полностью ни «в фазу», ни «вне фазы» и некоторое количество света остается. Таким образом, мы видим на экране не точную последовательность светлых и темных полос, а плавное изменение интенсивности между максимальными и минимальными точками в интерференционной картине. Это закономерное волнообразное плавное изменение интенсивности является ключевым индикатором волновых феноменов. Есть пример и со звуковыми волнами: музыкант, настраивая инструмент, прислушивается к биениям , которые получаются, если одна нота очень близка по частоте другой, так что по пути к уху музыканта они иногда попадают в фазу или вне фазы. Вариация их сочетаний производит общий звук, громкость которого периодически возрастает и снижается. Плавное изменение интенсивности звука происходит по причине интерференции между двумя отдельными волнами. Отметим, что эти биения представляют собой явление, подчиняющееся законам классической физики, которое не требует квантового толкования.

Ключевым фактором в эксперименте с двумя щелями является то, что пучок света, попадающий на первый экран, должен быть монохромным (состоящим из волн одной длины). Белый свет, который исходит от обычной лампочки, наоборот, состоит из волн различной длины (всех цветов радуги), так что волны будут падать на экран беспорядочно. В таком случае, несмотря на то что пики и низшие точки волн будут взаимодействовать друг с другом, полученная картина будет настолько сложной и размытой, что отдельные полосы будут неразличимы. Подобным образом, несмотря на простоту получения интерференционной картины при бросании в пруд двух камней, огромный водопад, низвергающийся в пруд, образует столько волн, что увидеть какую-либо когерентную интерференционную картину невозможно.

Теперь, на втором этапе опыта с двумя щелями, мы будем использовать не свет, а пули, летящие на экран. Суть в том, что мы используем твердые частицы, а не распространяющиеся волны. Каждая пуля должна, конечно, пройти через одну или другую щель, но не обе одновременно. После того как необходимое количество пуль пройдет через щели, мы увидим на заднем экране две полосы дырок от пуль, соответствующие двум щелям (рис. 4.3).


Рис. 4.3. Опыт с двумя щелями, этап 2. В отличие от поведения световых волн поток летящих через щели пуль демонстрирует поведение частиц. Каждая пуля, попадающая на задний экран, должна пройти через одну или другую щель, но не обе (конечно, принимая во внимание, что середина экрана имеет достаточную толщину, чтобы задержать пули, не попавшие в щели). В отличие от многополосной интерференции картина на заднем экране показывает скопление пуль вокруг двух узких полос, соответствующих каждой щели

Конечно, мы не имеем дела с волнами. Каждая пуля представляет собой отдельную частицу и не взаимодействует с другой, так что интерференции не наблюдается.

А теперь третий этап: квантовый «фокус». Опыт повторяют с использованием атомов вместо пуль. Пучок атомов, исходящий из источника, летит на экран с двумя узкими щелями . Для регистрации попадания атомов второй экран имеет фотолюминесцентное покрытие, на котором проявляется крошечная яркая точка в месте попадания атома.

Если бы на микроскопическом уровне действовал здравый смысл, то атомы повели бы себя как крошечные пули. Сначала мы проведем опыт, открыв только левую щель, и увидим полосу светлых точек на экране позади открытой щели. Определенное количество точек кладется на экран неровно: это может свидетельствовать о том, что некоторые атомы отталкиваются от краев, изменяют траекторию и не проходят строго через щель. Далее мы откроем правую щель и подождем, пока на заднем экране появятся яркие точки.

Если бы вас попросили предсказать распределение ярких точек и вы бы ничего не знали о квантовой механике, вы бы, естественно, догадались, что оно напоминало бы картину, полученную в опыте с пулями. А именно: позади каждой щели образуется полоса точек, то есть на экране возникают два различных светящихся участка, более ярких в центре и постепенно угасающих к краям, поскольку попадания атомов становятся более редкими. Также можно ожидать, что участок посередине между двумя яркими полосами будет темным, так как он соответствует части экрана, непроницаемой для атомов, в какую бы щель они ни попали.

Однако это не соответствует тому, что мы наблюдаем. Наоборот, мы видим очень четкую картину интерференции светлых и темных полос, точно такую же, как в опыте со светом. Верите или нет, но наиболее яркая часть экрана располагается в центре: на участке, на который не должно попадать много атомов (рис. 4.4).


Рис. 4.4. Опыт с двумя щелями, этап 3. При замене пуль на атомы, испускаемые из источника, расположенного перед щелями (разумеется, на каждом этапе подбираются соответствующие ширина и расстояние между щелями), мы вновь наблюдаем волнообразную интерференционную картину. Несмотря на то что каждый атом, попадающий на задний экран в определенной точке, ведет себя как частица, они объединяются в полосы, так же как мы видели в случае света. Почему атомы проходят через две щели одновременно, без чего мы не увидели бы множественных полос интерференции?

Фактически при правильном расстоянии между щелями и правильном расстоянии между двумя экранами мы можем убедиться, что яркий участок на заднем экране (куда атомы могли попасть при одной открытой щели) теперь, при двух открытых щелях, является темным (туда не попадает ни одного атома). Каким образом открытие второй щели, которая позволяет пройти большему количеству атомов, может помешать попаданию атомов на определенные части экрана?

Давайте посмотрим, сможем ли мы объяснить происходящее с помощью обычной логики, не прибегая пока к квантовой механике. Предположим следующее: несмотря на то что каждый атом представляет собой микроскопическую частицу (в конце концов, каждый атом ударяет в экран в одном месте), огромное количество атомов, сталкивающихся и взаимодействующих друг с другом особым согласованным образом, образуют картину с видимостью интерференции. Как бы там ни было, мы знаем, что волны воды на самом деле состоят из множества молекул воды, которые по отдельности не являются волнами. Именно скоординированное движение триллионов молекул воды, а не каждая молекула в отдельности проявляет волнообразные свойства. Возможно, атомная пушка испускает координированный поток атомов подобно волновой установке в бассейне.

Чтобы проверить теорию согласованных атомов, мы повторим эксперимент, но сейчас будем посылать атомы по одному . Мы включаем атомную пушку и ждем появления светящегося пятна на заднем экране, прежде чем включить ее второй раз, и т. д. Сначала может показаться, что здравый смысл все же преобладает: каждый атом, проходящий через щели, оставляет только одно локализованное пятно света в определенной части экрана. Кажется, атомы вылетают из пушки в виде частиц, подобно пулям, и попадают на экран как частицы. Безусловно, в пространстве между пушкой и экраном они также должны вести себя как частицы. Но - внимание - фокус: из шляпы появляется квантовый кролик. По мере того как пятна, каждое из которых регистрирует попадание одного атома-пули, постепенно покрывают экран, на нем вновь появляются светлые и темные полосы интерференции. Поскольку атомы теперь проходят через цель по одному, мы не можем говорить, что существует коллективное поведение множества атомов, сталкивающихся и взаимодействующих между собой. Это не похоже на волны воды. И снова мы сталкиваемся с противоречивым результатом: на заднем экране имеются места, на которые атомы могут попасть только при одной открытой щели и которые остаются полностью темными при открытии также второй щели, несмотря на то что ее открытие предоставляет дополнительный путь попадания атомов на экран. Кажется, что атом, проходя через одну щель, каким-то образом знает , открыта вторая щель или нет, и действует соответствующим образом!

Итак, каждый атом испускается из пушки как крошечная частица и падает на второй экран также как частица, что видно из крошечной вспышки света при его попадании. Но в пространстве между ними, при встрече с двумя щелями, происходит что-то волшебное, подобно распространению волны, которая расщепляется на два компонента, каждый из которых проходит через щель и взаимодействует с другим по другую сторону экрана. Как еще может один атом знать о состоянии (открытом или закрытом) обеих щелей одновременно?

Не забывая о подвохе, давайте посмотрим, можем ли мы поймать атомы, поджидая их позади щелей. Это можно осуществить, разместив датчик за левой щелью, скажем, чтобы он регистрировал «сигнал» (возможно, звуковой сигнал), когда атом будет проходить через эту щель по пути к экрану . Также мы можем поместить второй датчик за правой щелью для регистрации атомов, которые проходят через эту щель. Теперь, если атом проходит через одну или другую щель, мы услышим звуковой сигнал от правого или левого датчика. Но если атом сможет каким-то образом преодолеть свою пулеобразную природу и пройти через обе щели, то оба детектора издадут звуковой сигнал одновременно.

Теперь мы видим, что при каждом включении атомной пушки, которое сопровождается появлением яркой точки на экране, сигнал издает левый или правый датчик, но не оба сразу. Несомненно, теперь мы наконец имеем доказательства, что взаимодействие атомов имеет место при прохождении атомов через одну или другую щель, но не обе одновременно. Однако будем терпеливыми и продолжим наблюдать за экраном. По мере того как отдельные вспышки света объединяются, мы видим, что рисунок, создаваемый ими, уже не похож на интерференционную картину. Вместо нее появляются две яркие полосы, указывающие на скопление множества атомов позади каждой щели, так же как в опыте с пулями. Теперь в ходе эксперимента атомы ведут себя как обычные частицы. Как будто каждый атом ведет себя как волна при встрече со щелями, если за ним не наблюдают, в противном случае он просто остается крошечной частицей.

Возможно, присутствие датчика вызывает проблему, влияя на странное поведение атомов, проходящих через щели. Давайте проверим это, удалив один датчик, скажем, справа. Мы все еще можем получить некоторую информацию из этой схемы, потому что при включении пушки и появлении сигнала и яркого пятна на экране мы будем знать, что атом должен был пройти через левую щель. Когда мы включаем пушку, не слышим сигнала, но видим яркую точку на экране, то мы знаем, что атомы должны были попасть на экран через правую щель. Теперь мы можем знать, прошли атомы через левую или правую щель, но их траектория «нарушается» только с одной стороны. Если датчик сам по себе вызывает проблемы, мы будем ожидать, что атомы, которые вызвали звуковой сигнал, ведут себя как пули, а атомы, которые не вызвали сигнала (и прошли через правую щель), ведут себя как волны. Вероятно, мы увидим смесь пулеобразной картины (от атомов, прошедших через левую щель) и картины интерференции (от атомов, прошедших через правую щель) на экране.

Но это не так. В данной ситуации мы снова не наблюдаем интерференционной картины. На экране позади каждой щели образуется рисунок, выполненный пулеобразными атомами, ведущими себя как частицы. Кажется, что самого присутствия датчика, регистрирующего расположение атома, достаточно для уничтожения его волнового поведения, даже если датчик располагается на некотором расстоянии от траектории атома, проходящего через другую щель!

Возможно, физического присутствия датчика рядом с левой щелью достаточно, чтобы повлиять на прохождение атомов через нее, так же как большой камень изменяет направление воды в стремительном потоке. Мы можем провести эксперимент, выключив левый датчик. Он все еще на своем месте, так что мы можем ожидать, что его влияние будет практически таким же. Но теперь, в присутствии выключенного датчика, на экране опять появляется интерференционная картина! Все атомы, участвующие в опыте, опять стали вести себя как волны. Почему атомы ведут себя как частицы в присутствии включенного датчика около левой щели, но как только датчик выключают, они ведут себя как волны? Как частица, проходящая через правую щель, знает о том, включен или выключен датчик, расположенный слева?

На данном этапе вам придется забыть о логике и здравом смысле. Теперь мы имеем дело с корпускулярно-волновым дуализмом крошечных объектов, таких как атомы, электроны или фотоны, которые ведут себя как волна, если мы не знаем, через какую щель они проходят, и как частица, если мы наблюдаем за ними. Это и есть процесс наблюдения или измерения квантовых объектов, о котором мы говорили в главе 1, рассматривая демонстрацию квантового запутывания отдельных фотонов в эксперименте Алена Аспе. Как вы помните, команда Аспе измеряла фотоны, пропуская их через поляризованную линзу, устранявшую их запутанное состояние - которое является признаком их волновой природы, - заставляя их выбирать одно классическое поляризационное направление. Подобным образом измерение атомов, участвующих в опыте с двумя щелями, заставляет их выбирать между прохождением через правую или левую щель.

Квантовая механика действительно предоставляет нам замечательное логичное обоснование данного феномена; но единственное объяснение увиденного - результата опыта - не о том, что происходит, когда мы не наблюдаем. Однако, поскольку мы можем только видеть и измерять, вероятно, нет смысла требовать от квантовых объектов большего. Как мы можем оценить правомерность или правоту сообщения о феномене, которое мы не сможем никогда, даже в теории, проверить? Как только мы пытаемся это сделать, мы изменяем результат.

Квантовая интерпретация опыта с двумя щелями заключается в том, что в любой данный момент времени каждый атом должен быть описан набором чисел, определяющим его вероятное расположение в пространстве. Это показатель, который мы описывали в главе 2 как волновую функцию. Тогда мы говорили о волновой функции на примере отслеживания волны преступления, распространяющейся по городу путем определения вероятности ограблений в различных районах. Подобным образом волновая функция, описывающая прохождение атома через две щели, прослеживает вероятность обнаружения его в любой точке аппарата в любое заданное время. Но, как мы уточняли ранее, если грабитель должен иметь одно расположение в пространстве и времени и волна «вероятности преступления» описывает только наш недостаток знаний о его действительном расположении, то, наоборот, волновая функция атома в опыте с двумя щелями реальна , то есть она описывает физическое положение атома, который в действительности не имеет конкретного положения, если мы его не измеряем. Атом, таким образом, находится во всех местах одновременно - с переменной вероятностью, конечно, так что мы вряд ли найдем атом в местах, где его волновая функция мала.

Таким образом, вместо отдельных атомов, участвующих в опыте с двумя щелями, мы должны рассматривать волновую функцию, проходящую от источника к заднему экрану. При прохождении через щели волновая функция расщепляется на две и каждая половина проходит через одну из щелей. Отметим: то, что мы описываем здесь, является способом, которым абстрактное математическое число изменяется во времени. Бесполезно спрашивать, что в действительности происходит, так как мы должны посмотреть, чтобы проверить. Но как только мы попытаемся это сделать, мы исказим результат.

Возникает вопрос: когда волновая функция вновь «превращается» в локализованный атом? Ответим: когда мы пытаемся определить его положение. При подобном измерении квантовая волновая функция распадается до единственной вероятности. Опять же это не похоже на ситуацию с грабителем, где неопределенность его местонахождения внезапно сводится к единственной точке, после чего его арестовывает полиция. В этом случае определение повлияло именно на нашу информацию о местонахождении грабителя. Он был всегда только в одном месте в одно время. Но для атома это не так; в отсутствие какого-либо измерения атом действительно находится везде.

Таким образом, квантовая волновая функция рассчитывает вероятность обнаружения атома в конкретном месте, где мы сможем выполнить измерение его положения в данное время. Там, где перед измерением волновая функция велика, полученная вероятность обнаружения атома будет высока. Но там, где она мала, возможно, из-за деструктивной волновой интерференции, соответственно вероятность обнаружения атома, если мы захотим посмотреть, низка.

Мы можем представить волновую функцию, описывающую один атом после его выхода из источника. Он ведет себя как волна, которая стремится к щелям, так что на уровне первого экрана ее амплитуда будет равна в каждой щели. Если мы помещаем датчик к одной из щелей, нам следует ожидать равных вероятностей: 50 % времени мы будем фиксировать атом на левой щели и 50 % времени - на правой щели. Но - и это важно - если мы не пытаемся обнаружить атом на уровне первого экрана, то волновая функция проникает через обе щели без разрушения. Таким образом, в квантовых терминах мы можем говорить о волновой функции, которая описывает один атом в его суперпозиции: его существовании в двух местах одновременно, соответственно его волновой функции, проходящей через правую и левую щели одновременно.

По другую сторону щелей каждая отдельная часть волновой функции, одна из левой и одна из правой щели, снова распространяется и формирует набор математических волн, которые перекрываются, в одних точках усиливая, а в других - нейтрализуя амплитуду друг друга. Комбинированный эффект состоит в том, что волновая функция имеет картину, характерную для других волновых феноменов, таких как свет. Но будем иметь в виду, что эта сложная волновая функция все еще характерна для одного атома.

На втором экране, где осуществляется окончательное измерение положения атома, волновая функция позволяет нам рассчитать вероятность обнаружения частицы в различных точках экрана. Яркие полосы на экране соответствуют тем позициям, где две части волновой функции, исходящей из двух щелей, усиливают друг друга, а темные полосы соответствуют тем позициям, где они нейтрализуют друг друга и образуют нулевую вероятность обнаружения атома в этих позициях.

Важно помнить, что этот процесс усиления и нейтрализации - квантовая интерференция - имеет место даже при участии одной частицы. Помните, что существуют участки на экране, которых атомы, испускаемые одновременно, могут достичь только при одной открытой щели и которые остаются недостижимыми при обеих открытых щелях. Это имеет смысл только тогда, когда каждый атом, выпущенный из атомной пушки, описывается волновой функцией, которая может проходить оба пути одновременно. Комбинированная волновая функция с участками конструктивной и деструктивной интерференции исключает возможность обнаружения атома в некоторых позициях на экране, доступных только при одной открытой щели.

Все квантовые частицы, будь то элементарные частицы или атомы или молекулы, состоящие из этих частиц, демонстрируют волнообразное поведение, так что они могут взаимодействовать друг с другом. В таком квантовом состоянии они могут проявлять любое странное квантовое поведение, такое как нахождение в двух местах одновременно, вращение в обоих направлениях одновременно, прохождение через непроницаемые барьеры или причудливые запутанные связи с отдаленными партнерами.

В таком случае почему вы или я, состоящие из квантовых частиц, не можем быть в двух местах одновременно? Это было бы очень полезно в наше суетливое время. Ответ на это очень прост: чем больше и массивнее тело, тем меньше волновых свойств оно имеет и тело с массой и размерами человека или еще что-то достаточно большое и видимое невооруженным глазом будет иметь такую малую квантовую длину волны, которая не имеет измеримого эффекта. Но, если посмотреть глубже, вы можете подумать, что каждый атом в вашем теле наблюдается, или измеряется, другими атомами вокруг него, так что любые минимальные квантовые свойства, которыми он может обладать, очень быстро разрушаются.

Что же тогда мы подразумеваем под «измерением»? Мы уже кратко ответили на этот вопрос в главе 1, но теперь должны остановиться на нем подробнее, так как это является ключевым моментом в вопросе, насколько велик квантовый компонент в квантовой биологии.

<<< Назад
Вперед >>>

Фото из открытых источников

Британский физик лорд Кельвин в 1900 году утверждал, что все важные открытия науки уже сделаны. Однако квантовая механика и произвели настоящую революцию, и сегодня ни один физик не посмеет утверждать, что наше физическое знание о Вселенной близится к завершению. Напротив, каждое новое открытие автоматически рождает всё больше вопросов…

Каким образом измерить коллапс квантовых волновых функций?

В царстве фотонов, электронов и прочих элементарных частиц квантовая механика является законом. Частицы ведут себя как волны, которые распространяются на огромной площади. Каждая частица описывается "волновой функцией", которая говорит о её возможном расположении, скорости и других свойствах. На самом деле частица имеет диапазон значений для всех свойств до того времени, пока её экспериментально не измерили. В момент обнаружения её волновая функция "разрушается". Но, почему и как в той реальности, которую мы воспринимаем, несут крах для их волновой функции? Вопрос, известный как проблема измерения, может показаться эзотерическим, но наше понимание того, что такое наша реальность, да и существует ли она вообще - тоже находится под большим вопросом.
Почему вещества больше, чем антивещества?
На самом деле главный вопрос в том, почему что-то вообще существует. Некоторые учёные предполагают, что после Большого взрыва материя и антиматерия были симметричны. Если бы это было так, то видимый нами мир был бы сразу же уничтожен - электроны вступили бы в реакцию с антиэлектронами, протоны с антипротонами и так далее, оставляя за собой, лишь море "голых" фотонов.
Стрела времени
Время движется вперед, потому что свойство Вселенной под названием "энтропия", примерно определяется, как уровень увеличивающегося беспорядка, и поэтому нет никакого способа, чтобы обратить вспять рост энтропии после того, как это уже произошло. Но основной вопрос в следующем: почему энтропия находилась на низком уровне в момент зарождения Вселенной, когда сравнительно небольшое пространство переполнялось колоссальной энергией?
Что такое тёмная материя?
Во Вселенной более 80 % материи, которая не излучает и не поглощает свет. Поскольку тёмную материю не видно, её существование, а также свойства фиксируются благодаря её гравитационному воздействию на видимую материю, излучению и изменению структуры Вселенной. Эта тёмная субстанция пронизывает окраины галактики и состоит из "слабо взаимодействующих массивных частиц".
Что такое тёмная энергия?
Считается, что тёмная энергия - это космологическая постоянная, неотъемлемое свойство самого пространства, которое имеет отрицательное давление. Чем больше расширяется пространство, тем больше пространства создаётся, а с ним и тёмной энергии. На основании наблюдаемой ученые знают, что масса всей тёмной энергии должна составлять около 70% от общего объёма содержания Вселенной. Однако учёные до сих пор не могут найти способ, как её искать.


Научная фантастика – яркое подтверждение тому, что физика может быть интересна не только учёным, но и людям далёким от исследовательских лабораторий. Конечно, в книгах и фильма не рассказывают о научных теориях, а точнее подают физические факты занимательно и интересно. В этом обзоре десятка загадок из области физики, которые учёным ещё предстоит объяснить.

1. Лучи сверхвысоких энергий


Атмосфера Земли постоянно бомбардируется высокоэнергетическими частицами из космоса, которые называются « космическими лучами». Хотя они не наносят большого вреда людям, физики просто очарованы ими. Наблюдение за космическими лучами многому научило ученых об астрофизике и физике частиц. Но есть лучи, которые остаются загадкой по сей день. В 1962 году, во время эксперимента Volcano Ranch, Джон Д. Линсли и Ливио Скарси увидели нечто невероятное: космический луч сверхвысокой энергии с энергией более 16 джоулей.

Чтобы наглядно объяснить сколько это, можно привести следующий пример: один джоуль - это количество энергии, необходимое для поднятия яблока с пола на стол. Вся эта энергия была сосредоточена, однако, в частице в сто миллионов миллиардов раз меньше, чем яблоко. Физики без малейшего понятия, как эти частицы получают подобное невероятное количество энергии.

2. Инфляционная модель Вселенной


Вселенная удивительно равномерная в больших масштабах. Так называемый «космологический принцип» гласит, что куда бы ни отправиться во Вселенной, в среднем везде будет примерно одинаковое количество материала. Но теория Большого Взрыва предполагает, что во время зарождения Вселенной должны были наблюдаться большие различия в плотности. Таким образом, она была намного менее однородная, чем Вселенная сегодня.

Инфляционная модель предполагает, что Вселенная, которую все видят сегодня, происходит из крошечного объема ранней Вселенной. Этот маленький объем внезапно и быстро расширился, намного быстрее, чем Вселенная расширяется сегодня. Грубо говоря, это выглядело так, будто воздушный шарик внезапно надули воздухом. Хотя это объясняет, почему сегодня Вселенная более однородная, физики все еще не знают, что вызвало это «надутие».

3. Темная энергия и темная материя


Это удивительный факт: только около 5 процентов Вселенной состоит из того, что люди могут видеть. Несколько десятилетий назад физики заметили, что звезды на внешних краях галактик вращаются вокруг центра этих галактик быстрее, чем прогнозировалось.Чтобы объяснить это, ученые предположили, что в этих галактиках может быть какая-то невидимая «темная» материя, которая заставила звезды вращаться быстрее.

После появления этой теории дальнейшие наблюдения расширяющейся Вселенной привели к тому, что физики пришли к выводу: темной материи должно быть в пять раз больше, чем все, что могут видеть люди (т. е. обычной материи). Наряду с этим, ученые знают, что расширение Вселенной действительно ускоряется. Это странно, потому что стоило бы ожидать, что гравитационное притяжение материи («обычной» и «темной») замедлит расширение Вселенной.

Чтобы объяснить, что же уравновешивает гравитационное притяжение материи, ученые предположили существование «темной энергии», которая способствует расширению Вселенной. Физики полагают, что по меньшей мере 70 процентов Вселенной находится в форме «темной энергии». Тем не менее по сей день частицы, составляющие темную материю, и поле, которое составляет темную энергию, никогда непосредственно не наблюдались в лаборатории. По сути, ученые ничего не знают о 95 процентах Вселенной.

4. Сердце черной дыры


Черные дыры - одни из самых знаменитых объектов в астрофизике. Их можно описать их как области пространства-времени с такими сильными гравитационными полями, что изнутри даже не может пробиться свет. С тех пор как Альберт Эйнштейн в своей общей теории относительности доказал, что гравитация «искривляет» пространство и время, ученые знают, что свет не защищен от гравитационных эффектов.

Фактически, теория Эйнштейна была доказана во время солнечного затмения, которое продемонстрировало, что гравитация Солнца отклоняет лучи света, идущие от далеких звезд. С тех пор наблюдалось много черных дыр, в том числе огромная, находящаяся в центре нашей галактики. Но тайна того, что происходит в сердце черной дыры, до сих пор не решена.

Некоторые физики считают, что может существовать «сингулярность» - точка бесконечной плотности с некоторой массой, сосредоточенной в бесконечно малом пространстве. Однако, по-прежнему идут дискуссии о том, теряется ли информация внутри черных дыр, которые поглощают все частицы и излучение. Хотя от черных дыр исходит излучение Хокинга, оно не содержит никакой дополнительной информации о том, что происходит внутри черной дыры.

5. Разумная жизнь вне Земли


Люди испокон веков мечтают о пришельцах, когда они смотрят на ночное небо и гадают, может ли там кто-то жить. Но в последние десятилетия было обнаружено множество доказательств того, что это не просто мечта. Для начала, экзопланеты оказались гораздо более распространены, чем предполагалось ранее, причем у большинства звезд имеются планетарные системы. Также известно, что временный разрыв между тем, когда на Земле появилась жизнь, и когда появилась разумная жизнь, очень мал. Означает ли это, что много где должна была сформироваться жизнь.

Если это так, то нужно ответить на знаменитый «парадокс Ферми»: почему люди до сих пор не вступили в контакт с инопланетянами. Возможно, жизнь - обычное явление, но разумная жизнь редка. Может быть, через какое-то время все цивилизации решают не общаться с другими жизненными формами. Может, с людьми просто не хотят разговаривать. Или, как ни странно, возможно, это показывает, что многие инопланетные цивилизации уничтожают себя вскоре после того, как становятся технологически достаточно продвинутыми, чтобы общаться.

6. Путешествие быстрее скорости света


С тех пор как Эйнштейн изменил всю физику своей специальной теорией относительности, физики были уверены, что ничто не может двигаться быстрее скорости света. Фактически, теория относительности говорит, что когда любая масса двигается со скоростью, близкой к скорости света, то для этого требуется огромная энергия. Это видно в космических лучах сверхвысоких энергий, упомянутых ранее. У них необычайная энергия относительно их размера, но и они не путешествуют быстрее скорости света.

Жесткое ограничение скорости света может также объяснить, почему сообщения от чуждых цивилизаций маловероятны. Если они также ограничены этим фактором, то сигналы могут идти тысячи лет. В 2011 году в ходе эксперимента OPERA были получены предварительные результаты, которые предполагали, что нейтрино движутся быстрее скорости света.

Позже исследователи заметили некоторые ошибки в их экспериментальной установке, которые подтвердили, что результаты были неверными. В любом случае, если существует какой-либо способ передачи материи или информации быстрее скорости света, он, несомненно, изменит мир.

7. Способ описать турбулентность


Если вернуться из космоса на Землю, окажется, что и в повседневной жизни есть много вещей, которые трудно понять. За простейшим примером не нужно далеко ходить - можно открыть дома кран. Если открыть его не полностью, то вода будет течь плавно (это называется «ламинарным потоком»). Но если открыть кран полностью, то вода начнет течь неравномерно и разбрызгиваться. Это простейший пример турбулентности. Во многих отношениях турбулентность по-прежнему остается нерешенной проблемой в физике.

8. Сверхпроводник с комнатной температурой


Сверхпроводники - одни из самых важных устройств и технологий, которые когда-либо открыли люди. Это особый тип материала. Когда температура падает достаточно низко, электрическое сопротивление материала падает до нуля. Это означает, что можно получать огромный ток после подачи маленького напряжения на сверхпроводник.

Теоретически электрический ток может течь в сверхпроводящем проводе в течение миллиардов лет без рассеивания, потому что нет сопротивления его току. В современных же обычных проводах и кабелях из-за сопротивления теряется значительная часть мощности. Сверхпроводники могли бы уменьшить эти потери до нуля.

Есть одна проблема - даже высокотемпературные сверхпроводники должны быть охлаждены до температуры в минус 140 градусов по Цельсию, прежде чем они начнут демонстрировать свои замечательные свойства. Охлаждение до столь низких температур обычно требует жидкого азота или чего-то подобного. Поэтому это очень дорого. Многие физики по всему миру пытаются создать сверхпроводник, которые может работать при комнатной температуре.

9. Материя и антиматерия


В некотором смысле, люди до сих пор не знают, почему что-то существует вообще. Для каждой частицы существует «противоположная» частица, называемая античастицей. Итак, для электронов есть позитроны, для протонов существуют антипротоны, и так далее. Если частица когда-либо касается своей античастицы, они аннигилируют и превращаются в излучение.

Неудивительно, что антиматерия невероятно редкая, поскольку все бы просто уничтожилось. Иногда она попадается в космических лучах. Также ученые могут сделать антивещество в ускорителях частиц, но стоить это будет триллионы долларов за грамм. Однако, в целом антиматерия (как считают ученые) невероятно редкая в нашей Вселенной. Почему это так - настоящая тайна.

Просто никто не знает, почему в нашей Вселенной доминирует материя, а не антиматерия, ведь каждый известный процесс, который изменяет энергию (излучение) на вещество, производит одинаковое количество материи и антиматерии. Теория Уайлдера предполагает, что могут существовать целые области Вселенной, в которых доминирует антиматерия.

10. Единая теория


В XX веке были разработаны две великие теории, которые много что объясняли в физике. Одной из них была квантовая механика, в которой подробно описывались, как ведут себя и взаимодействуют крошечные, субатомные частицы. Квантовая механика и стандартная модель физики частиц объяснили три из четырех физических сил в природе: электромагнетизм и сильные и слабые ядерные силы.

Другой большой теорией была общая теория относительности Эйнштейна, объясняющая гравитацию. В общей теории относительности гравитация возникает, когда наличие массы изгибает пространство и время, заставляя частицы следовать по определенным изогнутым траекториям. Это может объяснить вещи, которые происходят в самых грандиозных масштабах - образование галактик и звезд. Есть только одна проблема. Две теории несовместимы.

Ученые не могут объяснить гравитацию способами, которые имеют смысл в квантовой механике, а общая теория относительности не включает эффекты квантовой механики. Насколько можно судить, обе теории верны. Но они, похоже, не работают вместе. Физики уже давно работают над каким-то решением, которое может примирить две теории. Оно называется Великой единой теорией или просто Теорией всего. Поиски продолжаются.

И в продолжение темы мы собрали ещё .

Никто в мире не понимает квантовую механику - это главное, что нужно о ней знать. Да, многие физики научились пользоваться ее законами и даже предсказывать явления по квантовым расчетам. Но до сих пор непонятно, почему присутствие наблюдателя определяет судьбу системы и заставляет ее сделать выбор в пользу одного состояния. «Теории и практики» подобрали примеры экспериментов, на исход которых неминуемо влияет наблюдатель, и попытались разобраться, что квантовая механика собирается делать с таким вмешательством сознания в материальную реальность.

Кот Шредингера

Сегодня существует множество интерпретаций квантовой механики, самой популярной среди которых остается копенгагенская. Ее главные положения в 1920-х годах сформулировали Нильс Бор и Вернер Гейзенберг. А центральным термином копенгагенской интерпретации стала волновая функция - математическая функция, заключающая в себе информацию обо всех возможных состояниях квантовой системы, в которых она одновременно пребывает.

По копенгагенской интерпретации, доподлинно определить состояние системы, выделить его среди остальных может только наблюдение (волновая функция только помогает математически рассчитать вероятность обнаружить систему в том или ином состоянии). Можно сказать, что после наблюдения квантовая система становится классической: мгновенно перестает сосуществовать сразу во многих состояниях в пользу одного из них.

У такого подхода всегда были противники (вспомнить хотя бы «Бог не играет в кости» Альберта Эйнштейна), но точность расчетов и предсказаний брала свое. Впрочем, в последнее время сторонников копенгагенской интерпретации становится все меньше и не последняя причина тому - тот самый загадочный мгновенный коллапс волновой функции при измерении. Знаменитый мысленный эксперимент Эрвина Шредингера с бедолагой-котом как раз был призван показать абсурдность этого явления.

Итак, напоминаем содержание эксперимента. В черный ящик помещают живого кота, ампулу с ядом и некий механизм, который может в случайный момент пустить яд в действие. Например, один радиоактивный атом, при распаде которого разобьется ампула. Точное время распада атома неизвестно. Известен лишь период полураспада: время, за которое распад произойдет с вероятностью 50%.

Получается, что для внешнего наблюдателя кот внутри ящика существует сразу в двух состояниях: он либо жив, если все идет нормально, либо мертв, если распад произошел и ампула разбилась. Оба этих состояния описывает волновая функция кота, которая меняется с течением времени: чем дальше, тем больше вероятность, что радиоактивный распад уже случился. Но как только ящик открывается, волновая функция коллапсирует и мы сразу видим исход живодерского эксперимента.

Выходит, пока наблюдатель не откроет ящик, кот так и будет вечно балансировать на границе между жизнью и смертью, а определит его участь только действие наблюдателя. Вот абсурд, на который указывал Шредингер.

Дифракция электронов

По опросу крупнейших физиков, проведенному газетой The New York Times, опыт с дифракцией электронов, поставленный в 1961 году Клаусом Йенсоном, стал одним из красивейших в истории науки. В чем его суть?

Есть источник, излучающий поток электронов в сторону экрана-фотопластинки. И есть преграда на пути этих электронов - медная пластинка с двумя щелями. Какой картины на экране можно ожидать, если представлять электроны просто маленькими заряженными шариками? Двух засвеченных полос напротив щелей.

В действительности на экране появляется гораздо более сложный узор из чередующихся черных и белых полос. Дело в том, что при прохождении через щели электроны начинают вести себя не как частицы, а как волны (подобно тому, как и фотоны, частицы света, одновременно могут быть и волнами). Потом эти волны взаимодействуют в пространстве, где-то ослабляя, а где-то усиливая друг друга, и в результате на экране появляется сложная картина из чередующихся светлых и темных полос.

При этом результат эксперимента не меняется, и если пускать электроны через щель не сплошным потоком, а поодиночке, даже одна частица может быть одновременно и волной. Даже один электрон может одновременно пройти через две щели (и это еще одно из важных положений копенгагенской интерпретации квантовой механики - объекты могут одновременно проявлять и свои «привычные» материальные свойства, и экзотические волновые).

Но при чем здесь наблюдатель? При том, что с ним и без того запутанная история стала еще сложнее. Когда в подобных экспериментах физики попытались зафиксировать с помощью приборов, через какую щель в действительности проходит электрон, картинка на экране резко поменялась и стала «классической»: два засвеченных участка напротив щелей и никаких чередующихся полос.

Электроны будто не захотели проявлять свою волновую природу под пристальным взором наблюдателя. Подстроились под его инстинктивное желание увидеть простую и понятную картинку. Мистика? Есть и куда более простое объяснение: никакое наблюдение за системой нельзя провести без физического воздействия на нее. Но к этому вернемся еще чуть позже.

Нагретый фуллерен

Опыты по дифракции частиц ставили не только на электронах, но и на куда больших объектах. Например, фуллеренах - крупных, замкнутых молекулах, составленных из десятков атомов углерода (так, фуллерен из шестидесяти атомов углерода по форме очень похож на футбольный мяч: полую сферу, сшитую из пяти- и шестиугольников).

Недавно группа из Венского университета во главе с профессором Цайлингером попыталась внести элемент наблюдения в подобные опыты. Для этого они облучали движущиеся молекулы фуллерена лазерным лучом. После, нагретые внешним воздействием, молекулы начинали светиться и тем неминуемо обнаруживали для наблюдателя свое место в пространстве.

Вместе с таким нововведением поменялось и поведение молекул. До начала тотальной слежки фуллерены вполне успешно огибали препятствия (проявляли волновые свойства) подобно электронам из прошлого примера, проходящим сквозь непрозрачный экран. Но позже, с появлением наблюдателя, фуллерены успокоились и стали вести себя как вполне законопослушные частицы материи.

Охлаждающее измерение

Одним из самых известных законов квантового мира является принцип неопределенности Гейзенберга: невозможно одновременно установить положение и скорость квантового объекта. Чем точнее измеряем импульс частицы, тем менее точно можно измерить ее положение. Но действие квантовых законов, работающих на уровне крошечных частиц, обычно незаметно в нашем мире больших макрообъектов.

Потому тем ценнее недавние эксперименты группы профессора Шваба из США, в которых квантовые эффекты продемонстрировали не на уровне тех же электронов или молекул фуллерена (их характерный диаметр - около 1 нм), а на чуть более ощутимом объекте - крошечной алюминиевой полоске.

Эту полоску закрепили с обеих сторон так, чтобы ее середина была в подвешенном состоянии и могла вибрировать под внешним воздействием. Кроме того, рядом с полоской находился прибор, способный с высокой точностью регистрировать ее положение.

В результате экспериментаторы обнаружили два интересных эффекта. Во-первых, любое измерение положения объекта, наблюдение за полоской не проходило для нее бесследно - после каждого измерения положение полоски менялось. Грубо говоря, экспериментаторы с большой точностью определяли координаты полоски и тем самым, по принципу Гейзенберга, меняли ее скорость, а значит и последующее положение.

Во-вторых, что уже совсем неожиданно, некоторые измерения еще и приводили к охлаждению полоски. Получается, наблюдатель может лишь одним своим присутствием менять физические характеристики объектов. Звучит совсем невероятно, но к чести физиков скажем, что они не растерялись - теперь группа профессора Шваба думает, как применить обнаруженный эффект для охлаждения электронных микросхем.

Замирающие частицы

Как известно, нестабильные радиоактивные частицы распадаются в мире не только ради экспериментов над котами, но и вполне сами по себе. При этом каждая частица характеризуется средним временем жизни, которое, оказывается, может увеличиваться под пристальным взором наблюдателя.

Впервые этот квантовый эффект предсказали еще в 1960-х годах, а его блестящее экспериментальное подтверждение появилось в статье , опубликованной в 2006 году группой нобелевского лауреата по физике Вольфганга Кеттерле из Массачусетского технологического института.

В этой работе изучали распад нестабильных возбужденных атомов рубидия (распадаются на атомы рубидия в основном состоянии и фотоны). Сразу после приготовления системы, возбуждения атомов за ними начинали наблюдать - просвечивать их лазерным пучком. При этом наблюдение велось в двух режимах: непрерывном (в систему постоянно подаются небольшие световые импульсы) и импульсном (система время от времени облучается импульсами более мощными).

Полученные результаты отлично совпали с теоретическими предсказаниями. Внешние световые воздействия действительно замедляют распад частиц, как бы возвращают их в исходное, далекое от распада состояние. При этом величина эффекта для двух исследованных режимов также совпадает с предсказаниями. А максимально жизнь нестабильных возбужденных атомов рубидия удалось продлить в 30 раз.

Квантовая механика и сознание

Электроны и фуллерены перестают проявлять свои волновые свойства, алюминиевые пластинки охлаждаются, а нестабильные частицы замирают в своем распаде: под всесильным взором наблюдателя мир меняется. Чем не свидетельство вовлеченности нашего разума в работу мира вокруг? Так может быть правы были Карл Юнг и Вольфганг Паули (австрийcкий физик, лауреат Нобелевской премии, один из пионеров квантовой механики), когда говорили, что законы физики и сознания должны рассматриваться как взаимодополняющие?

Но так остается только один шаг до дежурного признания: весь мир вокруг суть нашего разума. Жутковато? («Вы и вправду думаете, что Луна существует лишь когда вы на нее смотрите?» - комментировал Эйнштейн принципы квантовой механики). Тогда попробуем вновь обратиться к физикам. Тем более, в последние годы они все меньше жалуют копенгагенскую интерпретацию квантовой механики с ее загадочным коллапсом волной функции, на смену которому приходит другой, вполне приземленный и надежный термин - декогеренция.

Дело вот в чем - во всех описанных опытах с наблюдением экспериментаторы неминуемо воздействовали на систему. Подсвечивали ее лазером, устанавливали измеряющие приборы. И это общий, очень важный принцип: нельзя пронаблюдать за системой, измерить ее свойства не провзаимодействовав с ней. А где взаимодействие, там и изменение свойств. Тем более, когда с крошечной квантовой системой взаимодействуют махины квантовых объектов. Так что вечный, буддистский нейтралитет наблюдателя невозможен.

Как раз это объясняет термин «декогеренция» - необратимый с точки зрения процесс нарушения квантовых свойств системы при ее взаимодействии с другой, крупной системой. Во время такого взаимодействия квантовая система утрачивает свои изначальные черты и становится классической, «подчиняется» системе крупной. Этим и объясняется парадокс с котом Шредингера: кот представляет собой настолько большую систему, что его просто нельзя изолировать от мира. Сама постановка мысленного эксперимента не совсем корректна.

В любом случае, по сравнению с реальностью как актом творения сознания, декогеренция звучит куда более спокойно. Даже, может быть, слишком спокойно. Ведь с таким подходом весь классический мир становится одним большим эффектом декогеренции. А как утверждают авторы одной из самых серьезных книг в этой области, из таких подходов еще и логично вытекают утверждения вроде «в мире не существует никаких частиц» или «не существует никакого времени на фундаментальном уровне».

Созидающий наблюдатель или всесильная декогеренция? Приходится выбирать из двух зол. Но помните - сейчас ученые все больше убеждаются, что в основе наших мыслительных процессов лежат те самые пресловутые квантовые эффекты. Так что где заканчивается наблюдение и начинается реальность - выбирать приходится каждому из нас.

Есть темы, на которые писать — одно удовольствие. Сто тысяч авторов до тебя уже написали про ЭТО, сто тысяч про ЭТО напишут после, а всё равно найдётся читатель, который прочтёт ЭТО в первый раз. В данном случае речь пойдёт о квантовой механике. Подождите, не уходите на другой портал, пожалуйста! Не переживайте, что возникнут сложности, мы с вами ограничимся лишь скромной ролью стороннего наблюдателя. И поверьте, это совсем не сложно.

Что главное в эксперименте? Приборы? Теоретическая подготовка? Толковый ассистент? Нет, друзья. Единственное, без чего не может обойтись ни один эксперимент, — это экспериментатор. Нет его — нет никакого эксперимента. Пока не появился наблюдатель, который своим пытливым глазом смотрит за исходом опыта, а умелыми руками фиксирует его результаты, то, что происходит, никакой не эксперимент.

Но, оказывается, бывает так, что одно лишь присутствие наблюдателя во время опыта нарушает течение эксперимента, меняет состояние изучаемой системы и заставляет события развиваться в ином направлении. И мы с вами попытаемся разобраться в том, как квантовая механика оценивает такое последствие вмешательства наблюдателя в физическую реальность эксперимента на пяти классических примерах.

Пример первый: «кот Шредингера»

Хрестоматийный пример, навязший на зубах: «кот Шредингера». В герметичный чёрный (да какая на самом деле разница, какого он цвета!) ящик Шредингер (Erwin Schrödinger) прячет условного (воображаемого) кота, ампулу с ядом и спусковой ядерный механизм. Это устройство может в любой момент разбить ампулу и уничтожить животное. Весёленький эксперимент, скажете вы, и будете правы. Единственное оправдание, которое может спасти честь австрийского учёного в том, что опыт исключительно теоретический, и призван продемонстрировать логику размышления физика.

Спусковой механизм в случайный момент может выпустить радиоактивный атом, при распаде которого разобьётся ампула с ядом. Точное время распада не задано. Наблюдателю известно только время полураспада, то есть отрезок времени, за который распад произойдёт с вероятностью «фифти-фифти» — 50 на 50. Таким образом, наблюдая за закрытой коробкой, мы понимаем, что кот внутри своей замкнутой системы существует одновременно в двух состояниях: он либо жив, либо мёртв. Эти оба состояния можно описать волновой «функцией кота» (жив-мёртв), которая на протяжении времени изменяется. Чем дальше мы отдаляемся от начального этапа (кот точно жив), тем больше вероятность того, что ампула уже разбилась и эксперимент закончен (кот мёртв).

Но убедиться в том, что эксперимент закончился, можно, только открыв коробку. Потому до тех пор, пока наблюдатель не проник в замкнутую систему, вероятность того, что кот жив, остаётся, хоть и постоянно стремится к нулю. Таким образом, кот может вечно балансировать на грани жизни и смерти, пока его судьбу не определит учёный, которому надоело стоять над закрытой коробкой. И только тогда происходит коллапс волновой функции и из множества вариантов реализуется лишь один.

Это и есть так называемая копенгагенская интерпретация науки под названием «квантовая механика». Достоверно определить состояние любой системы можно только путём наблюдения. А наблюдатель одним лишь своим присутствием меняет результат исследования. Это и есть загадочный момент, на который указал Шредингер.

Пример второй: «замри-частица»

В 60-х годах прошлого столетия был предсказан квантовый эффект, который впоследствии доказала на практике группа учёных под руководством нобелевского лауреата Вольфганга Кеттерле (Wolfgang Ketterle). Изучая распад возбуждённых атомов рубидия на те же атомы в стабильном состоянии и фотоны, исследователи зафиксировали явное воздействие наблюдателя на результат эксперимента.

Нестабильная радиоактивная частица характеризуется средним временем жизни, которое может увеличиваться, если за ним ведётся пристальное наблюдение. Так, после начала эксперимента учёные начали наблюдать за распадом атомов в двух различных режимах: беспрерывном (система постоянно облучалась слабым световым потоком, фиксировавшим изменения) и импульсном (в систему периодически попадал более мощный, но короткий световой пучок).

Полученный результат оказался весьма интересным. Внешние световые воздействия на систему замедляли распад частиц, возвращая их в исходное состояние. Жизнь возбуждённых атомов рубидия, которые стремительно распадались, удавалось продлить в десятки раз. Эффект вошёл в историю науки под кодовым названием «замри-частица».

Пример третий: «электронный дуализм»

Одним из самых элегантных за всю историю квантовой физики признан опыт с дифракцией электронов, проведённый в 1961 году. Суть опыта заключалась в следующем: на пути потока электронов, летящих к фотофинишу, была установлена медная пластина с двумя щелями.

Если представить пучок электронов как группу маленьких заряженных шариков, можно было ожидать на экране две полосы напротив одной и другой щели. Но на самом деле, на экране появилось иное изображение — зебра сложной конфигурации, состоящая из чередующихся и перекрывающих друг друга светлых и тёмных полос. Результат эксперимента не менялся даже в том случае, если частицы пускались через щель не сплошным потоком, а поодиночке. Каждый из электронов в этот момент проявлял свои волновые функции и мог одновременно пройти через две щели.

Но это была только первая половина эксперимента. Когда физики предприняли попытку зафиксировать результат, картинка на экране вмиг стала классической — две полосы напротив щелей в медной пластине и никакой «странной» зебры. На глазах наблюдателя электроны «потеряли» свою волновую составляющую и продемонстрировали привычную для школьника средних классов картинку. Присутствие наблюдателя оказало воздействие на систему и автоматически изменило результаты самого наблюдения.

Пример четвёртый: «некоторые любят погорячее…»

Кроме электронов, в роли подопытных кроликов часто выступают крупные молекулы, составленные из нескольких десятков атомов углерода (фуллерены). Фуллерен (Fullerenes), составленный из шести десятков атомов, напоминает настоящий футбольный мяч, сшитый из шестиугольников. С этими крупными элементами проводят опыты по дифракции, подобные тем, которые ставят на электронах.

Не так давно венские учёные из группы профессора Цайлингера (Anton Zeilinger) рискнули добавить в опыт «элемент наблюдателя». Во время исследования экспериментаторы обстреливали подвижные фуллерены лазерным излучением. Молекулы нагревались от внешнего воздействия и светились в исследуемом пространстве, тем самым, обнаруживая своё местоположение.

Вместе с началом свечения изменялось и само поведение частиц. Если в «темноте», без присутствия наблюдателя, фуллерены аккуратно обходили препятствия, что выказывало их волновые свойства, то с появлением «зрителя», частицы начинали вести себя как твёрдые тела со всеми вытекающими характеристиками поведения, известными из классической физики.

Пример пятый: «…а некоторые похолоднее»

Но наиболее интересной из всех загадок квантовой физики является загадка принципа неопределённости Гейзенберга (Werner Karl Heisenberg). В популярном изложении он звучит так: одновременно установить и положение и скорость квантового объекта невозможно. То есть, чем точнее мы измеряем импульс элементарной частицы, тем менее точно можно установить, где она в данный момент находится. Это, конечно же, плохо применимо в мире больших объектов и вообще непонятно, что из этого может вытекать даже на элементарном уровне.

Эксперимент группы под управлением профессора Шваба (Keith Schwab) добавил пикантности классической неопределённости Гейзенберга. Разместив на пути движения микрочастиц крошечную алюминиевую полоску, учёные подключили прибор, способный с высочайшей точностью регистрировать её положение. И тут же получили два интересных результата. Во-первых, каждое новое измерение объекта меняло положение пластины. Прибор очень точно определял координаты полоски и тем самым менял её скорость, а, следовательно, и последующее положение в пространстве.

Но если первое открытие было спрогнозировано принципом неопределённости, то второе стало неожиданностью для всех. Измерения, которые делали учёные, приводили к охлаждению полоски. То есть, наблюдатель одним лишь своим присутствием менял физическую характеристику объекта. В данном случае температуру. Сразу нашлось и практическое использование этого эффекта: теперь профессор Шваб думает, как применить это явление для охлаждения сложнейших микросхем.

P. S.: Ощущение, что мир существует лишь в тот момент, пока вы на него смотрите, посещало даже великого Эйнштейна. Но он при этом уверял нас, что это не так. И действительно, как может наблюдающий за луной воздействовать на саму луну? Ну, а вдруг, на самом деле, всё, что происходит вокруг нас, всего лишь плод нашего воображения? И стоит нам уснуть, как мир исчезнет. Или всё-таки правы те, кто говорит, что законы физики мироздания и законы понимания этого мироздания (психики) должны рассматриваться как взаимодополняющие друг друга? Как две части одного большого учения.

Или вообще, это одна и та же наука? И называется она «физика». Потому что по сравнению с физикой всё остальное не более чем коллекционирование марок.

От редакции . Интересуетесь наукой? Заходите в киевский Музей популярной науки и техники «

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...