Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Углеводородное топливо его виды и значение. Химия углеводородов

20:12 04/05/2018

0 👁 731

Глава гиганта электронной коммерции Amazon и основатель аэрокосмической компании Blue Origin Джефф Безос дал большое интервью Business Insider. Предприниматель рассказал изданию о важности регулирования крупных ИТ-компаний, о нелегальных продажах “1984” Джорджа Оруэлла и планах освоения космоса. “Хайтек+” собрал самые интересные высказывания.

О Blue Origin и заселении Солнечной системы

В прошлом году глава Amazon Джефф Безос признал, что тратит часть своего состояния на аэрокосмическую отрасль. Ежегодно предприниматель продает акции на сумму $1 млрд, чтобы обеспечивать работу компании Blue Origin, которая на прошлой неделе успешно запустила многоразовую ракету New Shepard - впервые в нынешнем году.

В интервью Business Insider Безос рассказал о планах инвестировать свое состояние, которое он сколотил благодаря Amazon, в освоение космоса: “Я уверен и с каждым годом все больше убеждаюсь, что в долгосрочной перспективе Blue Origin - это самый важный проект, над которым я работаю”. Глава Amazon также добавил, что уже составил план развития аэрокосмической компании на годы вперед. “В будущем Blue Origin будет иметь важнейшее значение для цивилизации”, - уверен Безос.

В интервью предприниматель признал, что с детства увлекается космосом, однако его инвестиции в Blue Origin продиктованы не только праздным интересом. “Если мы не будем [заниматься освоением космоса], то однажды окажемся в состоянии застоя. А я не хочу, чтобы мои прапраправнуки жили в стагнирующей цивилизации. Все мы хотим динамики, роста и перемен”.

По словам Безоса, сегодня человечество потребляет все большее количество энергии, и с каждым годом этот показатель растет.

“Мы приближаемся к настоящему экономическому кризису, и он наступит скоро - уже через несколько сотен лет”.
По этой причине, считает основатель Amazon, людям следует перебираться на другие . Люди будут иметь неограниченный доступ к солнечной энергии, а население вырастет до одного триллиона. Такая цивилизация породит тысячу гениев - Моцартов и Эйнштейнов.

Безос также надеется, что в будущем вся тяжелая промышленность переместится за пределы . “Земля будет просто очень красивой планетой для жизни и легкой промышленности”, - рассчитывает основатель Amazon.

О космическом туризме

Blue Origin пока не продает билеты на суборбитальные туристические рейсы всем желающим, однако первые туристы отправятся в космос уже до конца 2018 или в начале 2019 года. Совершать полеты будет многоразовый корабль New Shepard, который берет на борт шесть пассажиров.

По мнению Безоса, освоение Солнечной системы невозможно без многоразовых ракет и кораблей: “Использовать корабли один раз и списывать их - это затратно и просто нелепо”. Компания работает над многоразовым орбитальным кораблем, который совершит первый полет уже в 2020 году.

О недоверии к большим корпорациям и необходимости регулирования

Регуляторы имеют полное право контролировать и проверять крупные ИТ-корпорации, подчеркивает Джефф Безос. В Amazon работает 560 000 человек, и при таком масштабе контроль со стороны правительственных ведомств неизбежен. “Тщательной проверке нужно подвергать крупные правительственные учреждения, крупные некоммерческие организации, крупные университеты”, - заявил Безос.

Предприниматель объяснит растущее недоверие к ИТ-гигантам природным инстинктом: “Люди, особенно на Западе и особенно в демократических странах, по определению скептично относятся к большим институциям, будь то полиция или армия. Это не значит, что им не доверяют или считают их злом. Просто они обладают властью и контролем, и поэтому их хочется пристально изучать”.

Технологические компании не должны реагировать на это, как на что-то экстраординарное, призывает Безос: “В этом нет ничего личного”.

Миссия Amazon, как считает руководитель компании, - обучать регуляторов и помогать им. Цинизм и скепсис здесь неуместен. “Это наш общественный долг”, - подчеркнул Безос. Он также отметил, что компания подчинится любым законам и будет следовать любым правилам, как бы сильно они не влияли на ведение бизнеса.

Об умении управляться с интернетом

Безос рассказал в интервью, как создавал свою компанию в период, когда многие еще не знали, что такое интернет. Сегодня эта технология разрослась и стала охватывать все отрасли. Интернет также породил машинное обучение и большие данные.

По словам Безоса, технология существует уже достаточно давно, но по-настоящему больших масштабов она достигла только за последние 10–15 лет:

“Человек еще не понял, как управляться с интернетом. Мы как цивилизация только пытаемся разобраться в этой сфере”.
По его мнению, интернет может стать и источником бед. “Новые мощные инструменты позволяют авторитарным государствам вмешиваться в свободные демократические выборы по всему миру. Это очень пугает”, - заметил Безос.

О “1984” и невыносимых условиях труда

Американские СМИ неоднократно публиковали репортажи об ужасных условиях труда на складах Amazon. Профсоюзы также критиковали компанию из-за низкой оплаты труда и жесткого графика. Однако Джефф Безос полагает, что критики предъявляют Amazon ложные обвинения: “Я горжусь нашими условиями труда и зарплатами, которые мы платим. Знаете, в Германии у нас работает 16 000 человек и мы платим им больше, чем в среднем по рынку”.

Однако иногда действия компании осуждали справедливо. Предприниматель вспомнил, что в первые годы запуска электронной книги Kindle компания по ошибке нелегально предоставляла доступ к роману-антиутопии “1984” Джорджа Оруэлла. Amazon не разобралась в хитросплетениях авторского права и нарушила условия реализации книги. Из-за этого роман пришлось удалять из библиотек пользователей в Kindle. За это компанию критиковали в СМИ, но, как считает, Безос, на это были веские причины.


1 .Природными источниками углеводородов являются горючие ископаемые - нефть и газ, уголь и торф. Природный газ состоит главным образом из метана (табл. 1).
Таблица 1 Состав природного газа
Компоненты Формула Содержание,%
Метан СН 4 88-95
Этан С 2 Н 6 3-8
Пропан С 3 Н 8 0,7-2,0
Бутан С 4 Н 10 0,2-0,7
Пентан С 5 Н 12 0,03-0,5
Диоксид углерода СО 2 0,6-2,0
Азот N 2 0,3-3,0
Гелий
Не
0,01-0,5

Сырая нефть представляет собой маслянистую жидкость, окраска которой может быть самой разнообразной – от темно-коричневой или зеленой до почти бесцветной. В ней содержится большое число алканов. Среди них есть неразветвленные алканы, разветвленные алканы и циклоалканы с числом атомов углерода от пяти до 40. Промышленное название этих циклоалканов-начтены. В сырой нефти, кроме того, содержится приблизительно 10% ароматических углеводородов, а также небольшое количество других соединений, содержащих серу, кислород и азот.

Рисунок 1 Природный газ и сырая нефть обнаруживаются в ловушках между слоями горных пород.
Уголь является древнейшим источником энергии, с которым знакомо человечество. Он представляет собой минерал, который образовался из растительного вещества в процессе метаморфизма. Метаморфическими называются горные породы, состав которых подвергся изменениям в условиях высоких давлений, а также высоких температур. Продуктом первой стадии в процессе образования угля является торф, который представляет собой разложившееся органическое вещество. Уголь образуется из торфа после того, как он покрывается осадочными породами. Эти осадочные породы называются перегруженными. Перегруженные осадки уменьшают содержание влаги в торфе.

Таблица 2Содержание углерода в некоторых видах топлива и их теплотворная способность

Уголь служит важным источником сырья для получения ароматических соединений.
Углеводороды встречаются в природе не только в горючих ископаемых, но также и в некоторых материалах биологического происхождения. Натуральный каучук является примером природного углеводородного полимера. Молекула каучука состоит из тысяч структурных единиц, представляющих собой метилбута-1,3-диен (изопрен); ее строение схематически показано на рис. 4. Метилбута- 1,3-диен имеет следующую структуру:

И в составе природного газа, и нефти, и торфа, и угля общим является наличие группы углеводорода.

2. Физические свойства нефти. Нефть представляет собой маслянистую жидкость обычно тёмного цвета со своеобразным запахом. Она немного легче воды и в воде не растворяется.

Рисунок 2. Геологический разрез нефтеносной местности.
Нефть залегает в земле, заполняя пустоты между частицами различных горных пород (рис. 2). Для добывания её бурят скважины (рис. 3). Если нефть богата газами, она под давлением их сама поднимается на поверхность, если же давление газов для этого недостаточно, в нефтяном пласту создают искусственное давление путём нагнетания туда газа, воздуха или воды (рис. 4).
Если нефть нагревать в приборе, изображённом на рисунке 4, то можно заметить, что она кипит и перегоняется не при постоянной температуре, что характерно для чистых веществ, а в широком интервале температур. Это значит, что нефть представляет собой не индивидуальное вещество, а смесь веществ. При нагревании нефти сначала перегоняются вещества с меньшим молекулярным весом, обладающие более низкой температурой кипения, затем температура смеси постепенно повышается, и начинают перегоняться вещества с большим молекулярным весом, имеющие более высокую температуру кипения, и т. д.

Рисунок 3 .Нефть поднимается под давлением нагнетаемой в пласт
В состав нефти входят главным образом углеводороды. Основную массу её составляют жидкие углеводороды, в них растворены газообразные и твёрдые углеводороды.

Рисунок 4. Перегонка нефти в лаборатории.
Состав нефти различных месторождений неодинаков. Грозненская и западноукраинская нефть состоят главным образом из предельных углеводородов. Бакинская нефть состоит преимущественно из циклических углеводородов - цикланов. Цикланы - это углеводороды, отличающиеся по своему строению от предельных тем, что содержат замкнутые цепи (циклы) углеродных атомов.

3 .Серьезная экологическая проблема - загрязнение нефтепродуктами вод Мирового океана. Нефтепродукты попадают в воду прежде всего при морских перевозках. При погрузке, разгрузке, чистке танкеров часть нефти теряется. Кроме того, случаются и аварии танкеров, при которых в море могут попасть десятки тысяч тонн нефти. По оценкам экологов, в Мировой океан попадает ежегодно около 10 млн. тонн нефти, которая растекается по поверхности воды, образуя тонкую радужную пленку. По данным спутниковой фотосьемки, такой пленкой покрыта уже треть поверхности Мирового океана. Из-за этой пленки нарушается контакт поверхности воды с воздухом, уменьшается содержание растворенного в воде кислорода, и гибнут обитатели морей и озер. Кроме того, пленка на поверхности воды замедляет испарение воды, и воздушные массы, проходя над водой, мало насыщаются водяными парами - нефтяная пленка мешает. То есть эти воздушные массы несут на континент меньше осадков, и тоненькая пленка на поверхности воды может изменить климат целых материков

4 . РЕКТИФИКАЦИЯ - разделение жидких многокомпонентных смесей на отдельные компоненты. Ректификация основана на многократной дистилляции.(ДИСТИЛЛЯЦИЯ - разделение многокомпонентных жидких смесей на отличающиеся по составу фракции; основано на различии в составах жидкости и образующегося из нее пара. Осуществляется путем частичного испарения жидкости и последующей конденсации пара. Полученный конденсат обогащен низкокипящими компонентами, остаток жидкой смеси - высококипящими).
Из сырой нефти прежде всего удаляют растворенные в ней примеси газов, подвергая ее простой перегонке. Затем нефть подвергают первичной перегонке, в результате чего ее разделяют на газовую, легкую и среднюю фракции и мазут. Дальнейшая фракционная перегонка легкой и средней фракций, а также вакуумная перегонка мазута приводит к образованию большого числа фракций. В табл. 4 указаны диапазоны температур кипения и состав различных фракций нефти
Таблица 3 Типичные фракции перегонки нефти

Фракция Температура кипения, °С Число атомов углерода в молекуле Содержание, масс. %
Газы <40 1-4 3
Бензин 40-100 4-8 7
Лигроин (нафта) 80-180 5-12 7
Керосин 160-250 10-16 13
Мазут: Смазочное масло и воск
350-500 20-35 25
Битум >500 >35 25

Перейдем теперь к описанию свойств отдельных фракций нефти.
Газовая фракция. Газы, получаемые при переработке нефти, представляют собой простейшие неразветвленные алканы: этан, пропан и бутаны. Эта фракция имеет промышленное название нефтезаводской (нефтяной) газ. Ее удаляют из сырой нефти до того, как подвергнуть ее первичной перегонке, или же выделяют из бензиновой фракции после первичной перегонки. Нефтезаводской газ используют в качестве газообразного горючего или же подвергают его сжижению под давлением, чтобы получить сжиженный нефтяной газ. Последний поступает в продажу в качестве жидкого топлива или используется как сырье для получения этилена на крекинг-установках.
Бензиновая фракция. Эта фракция используется для получения различных сортов моторного топлива. Она представляет собой смесь различных углеводородов, в том числе неразветвленных и разветвленных алканов. Особенности горения неразветвленных алканов не идеально соответствуют двигателям внутреннего сгорания. Поэтому бензиновую фракцию нередко подвергают термическому риформингу, чтобы превратить неразветвленные молекулы в разветвленные. Перед употреблением эту фракцию обычно смешивают с разветвленными алканами, циклоалканами и ароматическими соединениями, получаемыми из других фракций путем каталитического крекинга либо риформинга.
Лигроин (нафта). Эту фракцию перегонки нефти получают в промежутке между бензиновой и керосиновой фракцией. Она состоит преимущественно из алканов (табл.4).
Бльшую часть лигроина, получаемого при перегонке нефти, подвергают риформингу для превращения в бензин. Однако значительная его часть используется как сырье для получения других химических веществ.
Таблица 4 Углеводородный состав лигроиновой фракции типичной ближневосточной нефти
Углеводороды Число атомов углерода Содержание, %
5 6 7 8 9
Неразветвленные алканы 13 7 7 8 5 40
Разветвленные алканы 7 6 6 9 10 38
Циклоалканы 1 2 4 5 3 15
Ароматические соединения 2 4 1 7
100

Керосин . Керосиновая фракция перегонки нефти состоит из алифатических алканов, нафталинов и ароматических углеводородов. Часть ее подвергается очистке для использования в качестве источника насыщенных углеводородов-парафинов, а другая часть подвергается крекингу с целью превращения в бензин. Однако основная часть керосина используется в качестве горючего для реактивных самолетов.
Газойль . Эта фракция переработки нефти известна под названием дизельного топлива. Часть ее подвергают крекингу для получения нефтезаводского газа и бензина. Однако главным образом газойль используют в качестве горючего для дизельных двигателей. В дизельном двигателе зажигание топлива производится в результате повышения давления. Поэтому они обходятся без свечей зажигания. Газойль используется также как топливо для промышленных печей.
Мазут . Эта фракция остается после удаления из нефти всех остальных фракций. Большая его часть используется в качестве жидкого топлива для нагревания котлов и получения пара на промышленных предприятиях, электростанциях и в корабельных двигателях. Однако некоторую часть мазута подвергают вакуумной перегонке для получения смазочных масел и парафинового воска.Темный вязкий материал, остающийся после вакуумной перегонки мазута, называется «битум», или «асфальт». Он используется для изготовления дорожных покрытий.
5 .Крекинг. При вторичных методах переработки нефти и происходит изменение структуры углеводородов, входящих в ее состав. Среди этих методов большое значение имеет крекинг (расщепление) углеводородов нефти, проводимый для повышения выхода бензина. В этом процессе крупные молекулы высококипящих фракций сырой нефти расщепляются на меньшие молекулы, из которых состоят низкокипящие фракции
В результате крекинга кроме бензина получают также алкены, необходимые как сырье для химической промышленности.
сырой нефти

С 16 Н 34 > С 8 Н 16 + С 8 Н 18
Гексадекан октен октан

С 8 Н 18 > С 4 Н 10 + С 4 Н 8
Октан бутан бутен

С 4 Н 10 > С 2 Н 6 + С 2 Н 4
бутан этан этен

6 . Термический крекинг проводится при нагревании исходного сырья (мазута и др.) при температуре 450...550 °С и давлении 2...7 МПа. При этом молекулы углеводородов с большим числом атомов углерода расщепляются на молекулы с меньшим числом атомов как предельных, так и непредельных углеводородов. Таким способом получают главным образом автомобильный бензин. Выход его из нефти достигает 70%. Термический крекинг открыт русским инженером В.Г. Шуховым в 1891 г.
Каталитический крекинг производится в присутствии катализаторов (обычно алюмосиликатов) при 450 °С и атмосферном давлении. Этим способом получают авиационный бензин с выходом до 80%. Такому виду крекинга подвергается преимущественно керосиновая и газойлевая фракции нефти. При каталитическом крекинге наряду с реакциями расщепления протекают реакции изомеризации. В результате последних образуются предельные углеводороды с разветвленным углеродным скелетом молекул, что улучшает качество бензина.
Важным каталитическим процессом является ароматизация углеводородов, т. е. превращение парафинов и циклопарафинов в ароматические углеводороды. При нагревании тяжелых фракций нефтепродуктов в присутствии катализатора (платины или молибдена) углеводороды, содержащие 6...8 атомов углерода в молекуле, превращаются в ароматические углеводороды. Эти процессы протекают при риформинге (облагораживании бензинов).

Общее:
Реакция расщепления,при крекинг-процессах образуется большое количество газов (газы крекинга), которые содержат главным образом предельные и непредельные углеводороды. Эти газы используют в качестве сырья для химической промышленности.

Различия:
Получение разного рода бензина с разным процентным содержанием, в разных условиях,из неодинакового сырья.
7 .Газы нефтяные попутные - это углеводородные газы, которые сопутствуют нефти и выделяются из неё при сепарации.Газы нефтяные попутные содержат значительные количества этана, пропана, бутана и других предельных углеводородов. Кроме того, в газах нефтяных попутных присутствуют пары воды, а иногда и азот, углекислый газ, сероводород и редкие газы (гелий, аргон).
Перед подачей в магистральные газопроводы газ нефтяной попутный перерабатывают на так называемых газоперерабатывающих заводах, продукцией которых является газовый бензин, так называемый отбензиненный газ и углеводородные фракции, представляющие собой технически чистые углеводороды (этан, пропан, бутан, изобутан и др.) или их смеси.
Газовый бензин применяют как компонент автомобильных бензинов. Сжиженные газы (пропан-бутановая фракция) широко используют как моторное топливо для автотранспорта или как топливо для коммунально-бытовых нужд. Углеводородные фракции - ценное сырьё для химической и нефтехимической промышленности. Они широко используются для получения ацетилена. При окислении пропан-бутановой фракции образуются ацетальдегид, формальдегид, уксусная кислота, ацетон и др. продукты. Изобутан служит для производства высокооктановых компонентов моторных топлив, а также изобутилена - сырья для изготовления синтетического каучука. Дегидрированием изопентана получают изопрен - важный продукт при производстве синтетических каучуков.

Рис. 5 Оборудование по очистке попутного газа
8 .К природным газам относятся и так называемые попутные газы, которые обычно растворены в нефти и выделяются при ее добыче. В попутных газах содержится меньше метана, но больше этана, пропана, бутана и высших углеводородов. Кроме того, в них присутствуют в основном те же примеси, что и в других природных газах, не связанных с залежами нефти, а именно: сероводород, азот, благородные газы, пары воды, углекислый газ.

СН 2 =СН 2 +Н 2 > СН 3 -СН 3

С 3 Н 6 +Сl 2 > СН 3 -СНСl-СН 3

С 2 Н 6 Сl-С 2 Н 6 Cl +2Nа> СН 3 -СН 2 -СН 2 -СН 3 +2NaCl

9.

10 .Кокс - серое, чуть серебристое, пористое и очень твердое вещество, более чем на 96% состоящее из углерода. Процесс получения- кокса в результате переработки природных топлив называется коксованием.
В наше время 10% добываемого в мире каменного угля превращают в кокс. Коксование проводят в камерах коксовой печи, обогреваемых снаружи горящим газом. При повышении температуры в каменном угле происходят разнообразные процессы. При 250 0 С из него испаряется влага, выделяются СО и СО 2 ; при 350 0 С уголь размягчается, переходит в тестообразное, пластическое состояние, из него выделяются углеводороды-газообразные и низкокипящие, а также азотистые и фосфористые соединения. Тяжелые углистые остатки спекаются при 500 0 С, давая полукокс. А при 700 0 С и выше полукокс теряет остаточные летучие вещества, главным образом водород, и превращается в кокс.
Важным источником промышленного получения ароматических углеводородов наряду с переработкой нефти является коксование каменного угля.
При нагревании угля без доступа воздуха до 900-1050 о С приводит к его термическому разложению с образованием летучих продуктов и твердого остатка-кокса.
Коксование угля - периодический процесс. Основные продукты: кокс-96-98% углерода; коксовый газ-60% водорода, 25% метана, 7% оксида углерода (II) и др. Побочные продукты: каменноугольная смола (бензол, толуол), аммиак (из коксового газа)и др.
Реакции, характерные для продуктов коксования каменного угля.
Кокс применяют для изготовления электродов, для фильтрования жидкостей и, самое главное, для восстановления железа из железных руд и концентратов в доменном процессе выплавки чугуна. В доменной печи кокс сгорает и образуется оксид углерода (IV):

С + 0 2 = СО 2 + Q,

который взаимодействует с раскаленным коксом с образованием оксида углерода (II):
С + СO 2 = 2CO - Q
Оксид углерода (II) и является восстановителем железа, причем сначала из оксида железа (III) образуется оксид железа (II, III), затем оксид железа (II) и, наконец, железо:

        3Fe 2 O 3 + CO = 2Fe 3 O 4 + CO 2 + Q
        Fe 3 O 4 + CO = 3FeO + CO 2 – Q
        FeO + CO = Fe + CO 2 + Q
11. В последние годы (наряду с увеличением выработки топлива и масел) углеводороды нефти широко используют как источник химического сырья. Различными способами из них получают вещества, необходимые для производства пластмасс, синтетического текстильного волокна, синтетического каучука, спиртов, кислот, синтетических моющих средств, взрывчатых веществ, ядохимикатов, синтетических жиров и т.д.
Природный газ широко используют как дешевое топливо с высокой теплотворной способностью (при сжигании 1 м 3 выделяется до 54 400 кДж). Это один из лучших видов топлива для бытовых и промышленных нужд. Кроме того, природный газ служит ценным сырьем для химической промышленности. Разработано много способов переработки природных газов. Главная задача этой переработки - превращение предельных углеводородов в более активные - непредельные, которые затем переводят в синтетические полимеры (каучук, пластмассы). Кроме того, окислением углеводородов получают органические кислоты, спирты и другие продукты.
Раньше попутным газам также не находили применения, и при добыче нефти, они сжигались факельным способом. В настоящее время их стремятся улавливать и использовать как в качестве топлива, так и главным образом в качестве ценного химического сырья. Из попутных газов, а также газов крекинга нефти путем перегонки при низких температурах получают индивидуальные углеводороды.
Именно поэтому сжигание нефти, каменного угля и попутного нефтяного газа не является рациональным способом их использования.

МОУ ГИМНАЗИЯ №48

Реферат по химии на тему:

Природные источники углеводородов.


Челябинск 2003 г.
и т.д.................

Углеводородное топливо

Углеводородное топливо

горючее вещество, состоящее из соединений углерода и водорода. К У. т. относятся жидкие нефтяные топлива (автотракторные, авиационные, котельные и др.) и углеводородные горючие газы (метан , этан, бутан, пропан , их природные смеси и др.). Топлива авиационные на 96-99% состоят из углеводородов, главным образом парафиновых, нафтеновых и ароматических. В парафиновых углеводородах 15-16% водорода, в нафтеновых Углеводородное топливо14%, в ароматических - 9-12,5%. Чем выше содержание в У. т. водорода, тем больше его массовая теплота сгорания. Так, например, парафиновые углеводороды обладают на 1700-2500 кДж/кг (400-600 ккал/кг) большей теплотой сгорания, чем ароматические. Из углеводородных горючих газов наибольшее содержание водорода у метана (25%). Его низшая массовая теплота сгорания 50 МДж/кг (11970 ккал/кг) (у реактивных топлив - 43-43,4 МДж/кг (10250-10350 ккал/кг).

Авиация: Энциклопедия. - М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .


Смотреть что такое "Углеводородное топливо" в других словарях:

    углеводородное топливо - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN hydrocarbon fuel …

    Ископаемое топливо это нефть, уголь, горючий сланец, природный газ и его гидраты, торф и другие горючие минералы и вещества, добываемые под землёй или открытым способом. Уголь и торф топливо, образующиеся по мере накопления и разложения животных… … Википедия

    углеводородное топливо Энциклопедия «Авиация»

    углеводородное топливо - углеводородное топливо — горючее вещество, состоящее из соединений углерода и водорода. К У. т. относятся жидкие нефтяные топлива (автотракторные, авиационные, котельные и др.) и углеводородные горючие газы (метан, этан, бутан, пропан, их… … Энциклопедия «Авиация»

    жидкое углеводородное топливо - — Тематики нефтегазовая промышленность EN liquid hydrocarbon fuel … Справочник технического переводчика

    Топливо

    Топливо - для транспорта Здесь, на автозаправочной станции, утоляют вечную жажду двигателей, которые дарят человеку возможность с комфортом перемещаться на дальние расстояния. Самое распространенное топливо для транспорта - бензин. Более того, на… … Нефтегазовая микроэнциклопедия

    Топливо - для транспорта Здесь, на автозаправочной станции, утоляют вечную жажду двигателей, которые дарят человеку возможность с комфортом перемещаться на дальние расстояния. Самое распространенное топливо для транспорта - бензин. Более того, на… … Нефтегазовая микроэнциклопедия

    Сравнение синтетического топлива и обычного дизельного топлива. Синтетическое топливо заметно чище из за отсутствия серы и примесей … Википедия

    Искусственное жидкое углеводородное топливо для двигателей внутреннего сгорания, получаемое на базе переработки твёрдых горючих ископаемых (бурых и каменных углей, нефтяных сланцев, битуминозных песков). Большое развитие производство С. т.… … Энциклопедия техники

Книги

  • Нефть XXI Мифы и реальность альтернативной энергетики , Арутюнов В.. Ни одна из областей науки, пожалуй, не связана с российской экономикой в такой мере, как поиск альтернативных источников энергии. Конечно, человечество не может вечно рассчитывать на…
  • Нефть XXI. Мифы и реальность альтернативной энергетики , Арутюнов В.С.. Ни одна из областей науки, пожалуй, не связана с российской экономикой в такой мере, как поиск альтернативных источников энергии. Конечно, человечество не может вечно рассчитывать на…

Ученые ищут способы удалять избыточный углекислый газ (СО2) из атмосферы, поэтому множество экспериментов направлено на использование этого газа в создании топлива. И водород, и метанол использовали в экспериментах, но процессы были многоступенчатыми и требовали применения разнообразных методик. Теперь исследователи Техасского Университета (Арлингтон, ЮТА) продемонстрировали прямое, простое и недорогое преобразование СО2 и воды в жидкое топливо с помощью высокого давления, интенсивного излучения и сконцентрированного подогрева.

По словам исследователей из Техаса, это прорыв – получение технологии стабильного топлива с применением углекислого газа из атмосферы и преимуществом в виде производства кислорода как побочного продукта, что окажет еще более положительное воздействие на окружающую среду.

«Мы первые, кто использовал и свет, и тепло, чтобы синтезировать жидкие углеводороды в одноступенчатом процессе из СО2 и воды, - сказал Брайан Деннис, профессор UTA и научный coруководитель проекта. - Сосредоточенный свет стимулирует фотохимическую реакцию, которая генерирует высокоэнергетические промежуточные звенья и тепло, чтобы стимулировать термохимические реакции углеродного цепного формирования, таким образом производя углеводороды в одноступенчатом процессе».

Для инициации процесса фото- и термохимической реакции используется фотокатализатор из диоксида титана, который очень эффективен в UV-спектре, но неэффективен в видимом. Для повышения эффективности исследователи собираются создать фотохимический катализатор, лучше соответствующий солнечному спектру. Согласно исследованиям, команда предполагает, что кобальт, рутений или даже железо можно рассмотреть как хороших кандидатов на новый катализатор.

«У нашего процесса также есть важное преимущество перед альтернативными технологиями для транспортных средств, поскольку многие продукты углеводорода у нашей реакции те же, что используются в автомобилях, грузовиках и самолетах, таким образом, не будет необходимости менять существующую систему распределения топлива», - сказал Фредерик Макдоннелл, временный декан факультета химии и биохимии UTA и научный coруководитель проекта.

В будущем исследователи предполагают, что параболические зеркала могли также использоваться, чтобы сконцентрировать солнечный свет на катализаторе в реакторе, таким образом обеспечивая и необходимое нагревание, и фотоинициацию реакции без других источников внешнего питания. Команда также полагает, что любой избыток тепла, создаваемый в процессе, может быть также использован в других аспекты солнечного топливного средства, например, отделении и очистке воды.

Углеводородные топлива представляют собой смесь углеводородов.
Схема установки для определения фракционного состава топлива. Углеводородное топливо представляет собой жидкость сложного состава, состоящую из большого количества индивидуальных углеводородов. Такая жидкость не имеет определенной температуры кипения, процесс кипения происходит в некотором интервале температур. Характерными точками фракционного состава обычно считают температуру начала кипения, температуру выкипания 10, 50, 90 % объема топлива и температуру конца кипения.
Углеводородные топлива обладают свойством поглощать воду из воздуха и растворять ее. Растворимость воды в топливе невелика и зависит при прочих равных условиях от температуры и химического состава топлива. Наиболвеегигроскопичными являются ароматические углеводороды и особенно бензол. Поэтому топлива, богатые ароматическими углеводородами, обладают повышенной гигроскопичностью.
Углеводородное топливо, поступающее при 260 С, подвергается крекингу при 500 С в псевдоожиженном слое; применяется технологическая схема реактор - регенератор.
Углеводородные топлива характеризуются высокой теплотой сгорания. Продуктами их полного сгорания являются, главным образом, двуокись углерода и вода. Лишь водород, бериллий и бор имеют большие теплоты сгорания, чем углеводороды. Однако При их использовании в качестве топлив возникают весьма сложные проблемы, которые здесь не рассматриваются. По эксплуатационным свойствам углеводороды как топлива отличаются значительными преимуществами.
Углеводородные топлива отличаются высокой скоростью и пол-нотой сгорания. Благодаря этому двигатель получает для своей работы тепловой заряд большой плотности в весьма короткий отрезок времени. При хорошо организованном процессе полнота сгорания углеводородных топлив достигает 98 % и более.
Углеводородные топлива мало различаются по количеству воздуха, теоретически необходимого для полного его сгорания - в пределах от 13 9 до 15 0 кг / кг топлива. Причем чем выше массовая теплота сгорания топлива (выше соотношение водорода к углероду), тем больше воздуха необходимо для его сгорания.
Углеводородные топлива обладают свойством поглощать воду из воздуха и растворять ее. Растворимость воды в топливе невелика и зависит при прочих равных условиях от температуры и химического состава топлива. Наиболее гигроскопичными являются ароматические углеводороды, и особенно, бензол. Поэтому топлива, богатые ароматическими углеводородами, обладают повышенной гигроскопичностью.
Углеводородное топливо, которое находится в газообразном состоянии при температуре от 15 С и атмосферном давлении.
Углеводородные топлива без добавок неуглеводородных соединений обладают высокой физической стабильностью.
Гигроскопичность углеводородов. Углеводородные топлива обладают свойством поглощать воду из воздуха и растворять ее.
Легкое углеводородное топливо, перевозимое в жидком виде, а используемое в газообразном, называют сжиженным газом. Он получает широкое применение в качестве топлива в городах и сельских районах.

Углеводородные топлива типа керосина и широкой бензино-лигроино-керосиновой фракции имеют близкие пределы устойчивого горения в двигателе.
Для углеводородных топлив отношение СР / НР определяется с учетом относительного содержания углерода и водорода в рабочей массе топлива.
Для углеводородных топлив это сближение в первом приближении (за исключением области, близкой к области максимальной концентрации инертного газа) происходит прямо пропорционально изменению концентрации инертного газа и в основном вследствие смещения верхнего предела.
Дымность продуктов сгорания Д топлива ТС-1 на выходе из камеры сгорания ГТД в зависимости от давления в камере Я (по данным К. Н. Ерастова.| Расход углеводородов и топлива GT, сжигаемых без дымления, в зависимости от давления Р [ 140 ]. Склонность углеводородных топлив к дымлению характеризуется высотой некоптящего пламени, люминометрическим числом и определяется непосредственно при квалификационных испытаниях топлив на модельной камере сгорания.
Сравнение эффективности различных способов получения водорода. Для углеводородных топлив единственным ограничением является минимум производительности, при которой еще оправдывается сравнительная сложность конструкции установок. При этом первостепенный интерес представляют установки на жидких нефтепродуктах как наиболее универсальные.
Среди углеводородных топлив худшую фильтруемость при одинаковых условиях имеют дизельные топлива, наилучшую - бензины. На установке, моделирующей топливную систему летательных аппаратов, была исследована фильтруемость различных топлив.
Теплопроводность углеводородных топлив зависит от химического состава и температуры.
Теплопроводность углеводородных топлив зависит от их химического состава и при 0 С и атмосферном давлении лежит в пределах 0 115 - 0 125 Вт / (м - К), С повышением температуры теплопроводность топлив уменьшается; давление влияет незначительно. Наибольшую теплоемкость имеют алканы нормального строения. По мере увеличения разветвленности и роста отношения С: Н теплоемкость углеводородов падает. Высокую теплоемкость имеют спирты. При увеличении давления теплоемкость немного уменьшается.
Для углеводородных топлив (без присадки антидетонатора) замечено, что скорость сгорания изменяется пропорционально октановому числу.
Теплоемкость углеводородных топлив при 20 С и атмосферном давлении составляет 1 6 - 2 0 кДж / кг К.
Теплопроводность углеводородных топлив при 0 С и атмосферном давлении изменяется в пределах 0 115 - 0 125 Вт / м К.
Теплотворность углеводородных топлив колеблется в довольно узких пределах.
Фракции, получаемые при перегонке сырой нефти.
Источниками углеводородного топлива являются сырая нефть и природный газ. Месторождения нефти и газа обычно находятся рядом и имеются во многих странах мира.
Эра дешевого углеводородного топлива, обеспечившего небывалые темпы экономического роста промышленно развитых государств, ушла в прошлое безвозвратно.
В углеводородных топливах, при их хранении, происходят химические изменения в основном за счет окисления и дальнейших превращений наиболее нестойких углеводородов. При этом образуются продукты окисления смолистого характера и топлива становятся непригодными к применению на двигателях.
Высшая теплота сгорания некоторых элементов. Теплота сгорания углеводородных топлив зависит от химического состава и строения индивидуальных углеводородов, входящих в состав топлива, и для углеводородов различных групп находится в пределах 9500 - 10 500 ккал / кг. В табл. 4 приведены значения теплоты сгорания на единицу массы и объема для элементов, обладающих наибольшей теплотой сгорания по сравнению с остальными элементами периодической системы.
Основы горения углеводородных топлив, Издат.
Теплота сгорания углеводородных топлив может быть рассчитана по различным эмпирическим формулам.
Основы горения углеводородных топлив (перевод с английского), Изд-во иностр.
Основы горения углеводородных топлив, Издатинлит, 1960, стр.
Зависимость пределов устойчивости горения от химического состава углеводородов. При сгорании углеводородных топлив наблюдается выделение дисперсных частиц углистых веществ, близких по составу к углероду. Образующиеся при горении твердые частицы уносятся с продуктами сгорания и при большой концентрации могут быть заметны в виде дыма. Часть твердых выделений отлагается на поверхностях камеры сгорания в виде нагара. Образование нагара в двигателе зависит от следующих свойств топлива: фракционного и химического состава, плотности, содержания смолистых веществ, серы и других примесей. Кроме того, нагарообразование зависит от конструкции камеры сгорания и от полноты процесса сгорания.
Один пожарник спасает другого, попавшего в ядовитый дым, при пожаре в закрытом складе. При сжигании углеводородного топлива при низких температурах могут образовываться легкие углеводороды, альдегиды (такие как формальдегид) и органические кислоты. Значительные количества окиси азота образуются при высоких температурах - как следствие окисления азота, содержащегося в атмосфере, и при низких температурах горения топлива, в котором содержится много азота. Если топливо содержит хлор, образуется хлористый водород. Полимерные пластические материалы представляют особую опасность.
Молекулярную массу углеводородных топлив определяют главным образом криоскопическим методом и в редких случаях используют метод измерения плотности паров.
Сернистые соединения углеводородных топлив, в том числе и дизельного, в процессе конверсии паром переходят в основном в сероводород. Термодинамические расчеты, выполненные для некоторых реакций сероводорода с твердыми реагентами с целью определения степени превращения сероводорода в условиях больших концентраций водяного пара, показали, что для улавливания сероводорода из влажного газа наиболее благоприятным реагентом является окись цинка. Степень поглощения сероводорода окисью цинка даже в условиях высоких концентраций водяного пара (около 50 %) при температуре 800 - 900 С остается значительной (52 %), а окись кальция в этих же условиях не хемосор-бирует сероводорода.

Катализ окисления углеводородных топлив ионами металлов заключается в генерировании радикалов, обусловливающих развитие окислительных цепей и требующих дополнительного расхода антиокислителя на вывод из сферы реакции вновь образующихся пероксидных радикалов.
Для получения углеводородных топлив с повышенной термической стабильностью предложены способы , которые применяют обработку нефтяных дистиллятов серной кислотой и молекулярными ситами. Молекулярные сита избирательно выделяют полярные соединения, ухудшающие его термостабильность.
При контакте углеводородных топлив с металлами, особенно при повьппенной температуре, на поверхности последних образуются отложения.
Условия применения углеводородных топлив в ракетных двигателях и в сверхзвуковых самолетах существенно различаются. Из бака под наддувом газифицированного азота горючее поступает в центробежный насос, откуда через главный клапан - в зарубашечное пространство двигателя. Часть топлива после главного клапана горючего отбирается в систему автоматического управления рабочим процессом, где имеются узлы с зазорами трущихся пар 17 - 20 мк.
Схема термовоздушного газификатора бензина. Паровая конверсия углеводородного топлива в конструктивном оформлении более сложная. Это обусловлено необходимостью иметь дополнительную емкость для воды, систему ее подачи и дозирования.
Энергетические характеристики топлив для ВРД. Энергетические характеристики углеводородных топлив для ВРД могут быть повышены при помощи их радиоактивного облучения. При радиоактивном облучении молекулярный вес топлива увеличивается.
Энергетические характеристики углеводородных топлив для ВРД ограничены тем, что в их составе наряду с водородом, обладающим самой высокой теплотой сгорания 28 700 ккал / кг, содержится углерод, теплота сгорания которого невысока - 7800 ккал / кг. Путем замены углерода на более высококалорийные элементы, например бериллий (14 970 ккал / кг) и бор (14 170 ккал / кг), открываются широкие возможности получения перспективных высокоэнергетических топлив для ВРД.
Кислотное число углеводородных топлив и масел очень мало. Кислоты, а особенно оксикислоты, накапливающиеся в топливах и маслах при эксплуатации, являются крайне нежелательной примесью.
При выборе углеводородного топлива необходимо рассмотреть некоторые свойства углеводородов. К ним относятся количество теплоты, выделяемое на каждый грамм сожженного топлива; преимущество высокой энтальпии сгорания может быть утрачено, если из-за большой молекулярной массы требуется мною топлива.
Теплотворная способность углеводородных топлив зависит от элементарного состава, который в свою очередь связан с групповым составом.
При сгорании углеводородных топлив наблюдается выделение дисперсных частиц углистых веществ, близких по составу к углероду. Образующиеся при горении твердые частицы, по-видимому, в результате пиролиза топлива до кокса уносятся с продуктами сгорания и при большой концентрации могут быть заметны в виде дыма. Часть коксовых выделений отлагается на поверхностях камеры сгорания, лопатках турбины и прочих частях в виде нагара. Образование нагара в первую очередь зависит от условий сгорания топлива и его химического состава, в частности, от содержания углерода и водорода.

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...