Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Какие субатомные частицы являются фундаментальными. Что такое субатомная частица? Мир субатомных частиц

Частицы, из которых состоят атомы, можно представлять себе по-разному - например, в виде круглых пылинок. Они настолько малы, что каждую такую пылинку невозможно рассмотреть в отдельности. Все вещество, которое находится в окружающем мире, состоит из таких частиц. Что же представляют собой те частицы, из которых состоят атомы?

Определение

Субатомная частица является одним из тех «кирпичиков», из которых построен весь окружающий мир. К таким частицам относят протоны и нейтроны, которые входят в состав атомных ядер. Также к этой категории относятся и электроны, вращающиеся вокруг ядер. Иными словами, субатомные частицы в физике - это протоны, нейтроны и электроны. В привычном для человека мире, как правило, не встречается частиц другого рода - живут они необычайно мало. Когда их век заканчивается, происходит их распад на обычные частицы.

Количество же тех субатомных частиц, которые живут относительно недолго, на сегодняшний день исчисляется сотнями. Их число настолько велико, что ученые уже не используют обычных названий для их обозначения. Как и звездам, им нередко присваиваются числовые и буквенные обозначения.

Основные характеристики

К числу самых важных характеристик любой субатомной частицы относят спин, электрический заряд, а также масса. Так как нередко вес частицы оказывается связанным с массой, некоторые из частиц традиционно носят название «тяжелых». Уравнение, которое вывел Эйнштейн (E = mc2), указывает на то, что масса субатомной частицы напрямую зависит от ее энергии и от скорости. Что касается электрического заряда, то он всегда кратен фундаментальной единице. К примеру, если заряд протона равен +1, то заряд электрона составляет -1. Однако некоторые из субатомных частиц, к примеру, фотон или нейтрино, не имеют электрического заряда вообще.

Также важной характеристикой является время жизни частицы. Совсем недавно ученые были уверены, что электроны, фотоны, а также нейтрино и протоны совершенно стабильны, и их время жизни практически бесконечно. Однако это не совсем так. Нейтрон, к примеру, остается стабильным только до того времени, пока он не «освобождается» из ядра атома. После этого время его жизни в среднем составляет 15 минут. Все нестабильные частицы претерпевают процесс квантового распада, который никогда не может быть полностью предсказуемым.

Исследования частиц

Атом считался неделимым - до тех пор, пока не было открыто его строение. Приблизительно столетие назад Резерфорд произвел свои знаменитые опыты, заключавшиеся в бомбардировании тонкого листа Выяснилось, что атомы вещества являются практически пустыми. А в центре атома находится все то, что мы называем ядром атома - оно приблизительно в тысячу раз меньше самого атома. На тот момент ученые считали, что атом состоит из двух типов частиц - ядра и электронов.

Со временем у ученых возник вопрос: почему протон, электрон и позитрон держатся вместе, и не распадаются в разные стороны под воздействием кулоновских сил? А также для ученых того времени оставалось неясным: если эти частицы являются элементарными, то с ними ничего не может произойти, и они должны жить вечно.

С развитием квантовой физики исследователи выяснили, что нейтрон подвержен распаду, и при этом достаточно быстрому. Он распадается на протон, электрон и еще нечто, что невозможно было уловить. Последнее было замечено по недостатку энергии. Тогда ученые предполагали, что список элементарных частиц исчерпан, однако теперь известно, что это далеко не так. Была открыта новая частица под названием нейтрино. Она не несет никакого электрического заряда и обладает чрезвычайно малой массой.

Нейтрон

Нейтрон - субатомная частица, которая обладает нейтральным электрическим зарядом. Ее масса практически в 2 тысячи раз превышает массу электрона. Так как нейтроны относятся к классу нейтральных частиц, то взаимодействуют они непосредственно с ядрами атомов, а не с их электронными оболочками. Также у нейтронов имеется магнитный момент, позволяющий ученым исследовать микроскопическую магнитную структуру вещества. Нейтронное излучение является безвредным даже для биологических организмов.

Субатомная частица - протон

Ученые выяснили, что эти «кирпичики материи» состоят из трех кварков. Протон является положительно заряженной частицей. Масса протона превосходит массу электрона в 1836 раз. Один протон и один электрон, соединяясь, образуют простейший химический элемент - атом водорода. До недавнего времени считалось, что протоны не могут менять свой радиус в зависимости от того, какие электроны вращаются над ними. Протон является электрически заряженной частицей. Соединяясь с электроном, он превращается в нейтрон.

Электрон

Электрон впервые был обнаружен английским физиком Дж. Томсоном в 1897 г. Эта частица, как сейчас считают ученые, является элементарным, или точечным объектом. Так называется субатомная частица в атоме, которая не имеет собственной структуры - не состоит из каких-либо других, более мелких, составляющих. В союзе с протоном и нейтроном электрон образует атом. Сейчас ученые еще не выяснили, из чего же состоит эта частица. Электрон является частицей, которая обладает бесконечно малым электрическим зарядом. Само слово «электрон» в переводе с древнегреческого означает «янтарь» - ведь именно янтарь ученые Эллады использовали для того, чтобы исследовать явления электричества. Этот термин был предложен британским физиком в 1894 г. Дж. Стони.

Зачем нужно изучать элементарные частицы?

Самый простой ответ на вопрос о том, зачем ученым необходимо знание о субатомных частицах, звучит так: чтобы иметь информацию о внутреннем строении атома. Однако такое утверждение содержит в себе лишь долю истины. В действительности, ученые изучают не просто внутреннее строение атома - основным полем их исследований являются столкновения мельчайших частиц вещества. Когда эти частицы, обладающие огромной энергией, сталкиваются друг с другом на больших скоростях, в буквальном смысле слова происходит рождение нового мира, а осколки материи, остающиеся после столкновений, помогают раскрыть тайны природы, всегда остававшиеся загадкой для ученых.

Хотя серии элементов не содержат комбинаций движений с результирующим, положительным смещением меньше чем у водорода, 2–1–(-1), это не значит, что таких комбинаций не существует. Это означает, что они не обладают достаточным смещением скорости для формирования двух завершенных вращающихся систем и, соответственно, не обладают свойствами, характеризующими комбинации вращения, которые мы называем атомами. Эти менее сложные комбинации вращения можно определить как субатомные частицы . Как очевидно из вышесказанного, эти частицы не являются составляющими атомов , как они рассматриваются в современной научной мысли. Они являются структурами той же природы, что и атомы элементов, но их общее результирующее смещение ниже минимума, необходимого для формирования завершенной атомной структуры.

Термин “субатомный” относится к этим частицам согласно допущению, что эти частицы являются или могут быть строительными блоками, из которых строятся атомы. Наши открытия делают этот смысл устаревшим, но название приемлемо в смысле системы движений более низкой степени сложности, чем атомы. Поэтому в этой работе оно будет сохранено, но будет использоваться в модифицированном смысле. Термин “элементарная частица” следует отбросить. В смысле базовых единиц, из которых могут формироваться другие структуры, “элементарных” частиц не существует. Частица меньше и менее сложная, чем атом, но ни коей мере не элементарная. Элементарная единица – это единица движения.

Со времени публикации первого издания теоретические характеристики субатомных частиц, выведенные из постулатов СТОВ, изучались дополнительно. В результате произошло значительное увеличение объема информации, доступной в связи с этими объектами, включая теоретическое открытие некоторых частиц, более сложных, чем описанные в первом издании. Более того, сейчас мы может исследовать структуру и поведение космических субатомных частиц гораздо глубже (в последующих главах). Чтобы обеспечить представление увеличившегося объема информации, была разработана новая система представления распределения вращения по измерениям.

Конечно, это значит, что сейчас мы пользуемся одной системой для обозначения вращения элементов и другой системой для представления вращения той же природы, если имеем дело с частицами. На первый взгляд это может казаться ненужным усложнением. Но дело в следующем: поскольку мы хотим воспользоваться преимуществом удобства использования двойной единицы смещения, если имеем дело с элементами, в то время как должны пользоваться одной единицей, имея дело с частицами, мы вынуждены пользоваться двумя разными системами, похожи они или нет. По существу, именно отсутствие осознания этой разницы привело к путанице, которой сейчас нам бы хотелось избежать. Представляется, что пока для удобного пользования данными необходимы две разные системы обозначения, нам придется установить систему для частиц, которая будет лучше служить нашим целям и достаточно отличаться, чтобы избежать путаницы.

Как и в первом издании, новое обозначение, используемое в этом издании, будет указывать смещения в разных измерениях, и, как и раньше, выражать их в индивидуальных единицах, но будет показывать только действующие смещения и включать буквенные символы, предназначенные специально для обозначения основы вращения частицы. Из-за характеристик математических процессов, которыми мы будем пользоваться, имея дело с элементами, необходимо принимать во внимание исходную недействующую единицу вращения. В случае с субатомными частицами это не так. И поскольку атомным (двойным) обозначением нельзя пользоваться в любом событии, мы будем показывать только действующие смещения и предварять их буквами М или К для указания на то, является ли основа вращения комбинации материальной или космической. Это пойдет на пользу ясному указанию, что величины вращения в любом конкретном случае выражаются новым обозначением.

Изменение в символическом представлении вращений и другие модификации терминологии, которые мы делаем в этом издании, могут представлять трудности для тех, кто уже привык к способу представления в ранних трудах. Однако советуем воспользоваться любыми возможностями улучшения, которые могут быть осознаны на нынешней ранней стадии теоретического рассмотрения. С течением времени улучшения такой природы будут становиться менее подходящими, а существующие практики начнут сопротивляться изменению.

На новом основании основа материального вращения – М 0–0–0. К этой основе можно прибавить единицу положительного электрического смещения, создавая позитрон , М 0–0–1, или единицу отрицательного электрического смещения, в этом случае результатом будет электрон, М 0–0–(1). Электрон – уникальная частица. Это единственная структура, построенная на материальной основе, и, следовательно, устойчивая в локальной окружающей среде, которая обладает эффективным отрицательным смещением. Это возможно потому, что общим смещением вращения электрона является сумма исходной, положительной магнитной единицы, требуемая для нейтрализации негативного смещения фотона (не показанного в структурном изображении), и отрицательной электрической единицы. Как и в случае двумерного движения, магнитная единица является главным компонентом общего вращения, хотя ее числовая величина не больше, чем величина одномерного электрического вращения. Следовательно, электрон отвечает требованию, что результирующее общее вращение материальной частицы должно быть положительным.

Как уже говорилось, дополнительное движение с отрицательным смещением прибавляет большее пространство к существующей физической ситуации, какой бы она ни была. Следовательно, электрон является вращающейся единицей пространства. Позже мы увидим, что этот факт играет важную роль во многих физических процессах. Одним из мгновенных и очень заметных результатов является то, что в материальной окружающей среде изобилуют электроны, в то время как позитроны крайне редки. На основании соображений, относящихся к электрону, мы можем отнести позитрон к вращающейся единице времени. Как таковой, позитрон легко поглощается материальной системой комбинаций, составляющими которой являются преимущественно временные структуры; то есть, вращающиеся единицы с результирующим, положительным смещением (скорость = 1/t). В этих структурах возможности использования отрицательного смещения электронов крайне ограничены.

Если к основе вращения прибавляется магнитная единица, а не электрическая, результат можно выразить как М 1-0-0. Однако представляется, что обозначение М ½-½-0 предпочтительнее. Конечно, половинок единиц не существует, но единица двумерного вращения, очевидно, занимает оба измерения. Чтобы осознать этот факт, мы будем отводить каждому измерению половинку единицы. Обозначение ½-½ лучше выражает способ, которым эта система движений вступает в дальнейшие комбинации. По причинам, которые вскоре прояснятся, мы будем называть частицу М ½-½-0 безмассовым нейтроном.

На уровне единицы в одноединичной системе вращения магнитные и электрические единицы численно равны, то есть, 1 2 =1. Прибавление к комбинации движений М ½-½-0 единицы отрицательного электрического смещения - безмассового нейтрона, создает комбинацию с общим результирующим смещением равным нулю. Такая комбинация М ½-½-(1) может определяться как нейтрино .

В предыдущей главе свойство атомов материи, известное как атомный вес или масса, определялось как результирующее, положительное трехмерное смещение вращения (скорость) атомов. Это свойство будет детально обсуждаться в следующей главе, а сейчас заметим, что это же самое определение применяется и к субатомным частицам. То есть, эти частицы обладают массой в такой степени, в какой обладают результирующим, положительным смещением вращения в трех измерениях. До настоящего момента считалось, что ни одна из частиц не удовлетворяет этому требованию. Электрон и позитрон обладают результирующим вращением в одном измерении, безмассовый нейтрон – в двух. Нейтрино вообще не обладает никаким результирующим смещением. Отсюда, субатомные комбинации вращения определяются как безмассовые частицы .

Однако посредством комбинирования с другими движениями, смещение в одном или двух измерениях может достигать статуса компонента трехмерного смещения. Например, частица может обретать заряд – вид движения, который будет исследоваться позже. И когда это происходит, все смещение заряда и первичной частицы будет проявляться как масса. Или частица может комбинироваться с другими движениями так, что смещение безмассовой частицы становится компонентом трехмерного смещения структуры комбинации.

Прибавление единицы положительного, а не отрицательного, электрического смещения к безмассовому нейтрону будет создавать М ½-½-1, а результирующее общее смещение этой комбинации равно 2-м. Этого достаточно для формирования завершенной двойной вращающейся системы - атома. И бо льшая вероятность двойной структуры мешает любому существованию комбинации М ½-½-1, кроме моментального.

Те же соображения вероятности исключают двухединичную магнитную структуру М 1-1-0 и положительную производную М 1-1-1, которые обладают результирующими смещениями соответственно 2 и 3. Однако отрицательная производная М 1-1-(1), практически созданная путем прибавления нейтрино М ½-½-(1) к безмассовому нейтрону М ½-½-0, может существовать как частица, поскольку ее результирующее общее смещение представляет всего одну единицу, чего не достаточно для создания двойной структуры в обязательном порядке. Такую частицу можно определить как протон .

Здесь мы видим пример того, как сами по себе безмассовые частицы (поскольку не обладают трехмерным вращением) комбинируются для создания частицы с действующей массой. Безмассовый нейтрон вращается лишь в двух измерениях, в то время как нейтрино не обладает результирующим вращением. Но путем их сложения создается комбинация с действующим вращением во всех трех измерениях. В результате возникает протон М 1-1-(1), обладающий одной единицей массы.

На современной (скорее ранней) стадии развития теории невозможно точно оценить факторы вероятности и другие влияния, определяющие будет ли при данном наборе обстоятельств реально существовать теоретически уместная комбинация вращений или нет. Однако доступная сейчас информация указывает, что любая комбинация материального вида с результирующим смещением меньше 2-х способна существовать как частица в локальной окружающей среде. Ни одна из систем комбинаций, определенных в предыдущих параграфах, не наблюдается в реальной практике, и имеется большое сомнение в том, как их можно наблюдать иначе, чем с помощью косвенных процессов, позволяющих предполагать их существование. Например, нейтрино “наблюдается” лишь посредством продуктов определенных событий, в которых эта частица, предположительно, участвует. Электрон, позитрон и протон наблюдались только в заряженном, а не в незаряженном состоянии - базовом состоянии всех обсужденных до этого момента комбинаций вращения. Тем не менее, имеется достаточное основание утверждать, что все эти незаряженные структуры существуют на самом деле и играют значимые роли в физических процессах. Оно будет приведено позже по мере продолжения теоретического рассмотрения.

В предыдущих публикациях комбинация М ½-½-0 (1-1-0 в обозначении, использованном в них) определялась как нейтрон. Но было замечено, что в некоторых физических процессах, таких как неустойчивость (распад) космического луча, магнитное смещение, которое, как ожидалось, должно было испускаться в виде нейтронов, на самом деле передавалось в безмассовой форме. Поскольку наблюдаемый нейтрон является частицей с единицей атомного веса, в то время пришли к выводу, что в этих конкретных примерах нейтроны действуют как комбинации нейтрино и позитронов – безмассовых частиц. Исходя из этого, нейтрон играет двойную роль: в одних обстоятельствах он безмассовый, а в других – обладает единицей массы.

Дальнейшее исследование, фокусирующееся в основном на вторичной массе субатомных частиц, которое будет обсуждаться в главе 13, раскрыло, что наблюдаемый нейтрон не является одноединичным действующим магнитным вращением с результирующими смещениями М ½-½-0, а более сложной частицей с тем же результирующим смещением, и что одноединичное магнитное смещение безмассовое. Больше не нужно полагать, что одна и та же частица выступает двумя разными способами. Существуют две разные частицы.

Объяснение таково: новые открытия выявили существование структуры, промежуточной между индивидуальными вращающимися системами безмассовых частиц и целостными двойными системами атомов. В промежуточных структурах существует две вращающиеся системы, как в атомах элементов. Но лишь одна из них обладает результирующим действующим смещением. В такой системе вращение является вращением протона М 1-1-(1). Во второй системе имеется вращение типа нейтрино.

Безмассовые вращения второй системы могут быть либо вращениями материального нейтрино М ½-½-(1), либо космического нейтрино К ½-½-1. В случае вращения материального нейтрино комбинированные смещения представляют собой М ½-½-(2). Эта комбинация обладает массой одного изотопа водорода – структурой, идентичной структуре обычной массы двухатомного дейтерия М 2-2-(2) или М 2-1-(1) в атомном выражении, за исключением того, что ее магнитное смещение на одну единицу меньше, и, следовательно, масса тоже на одну единицу меньше. Если вращение космического нейтрино прибавляется к протону, комбинированные смещения будут М 2-2-0, та же результирующая сумма, что и у одноединичного магнитного вращения. Эту теоретическую частицу, сложный нейтрон , как мы будем ее называть, можно определить как наблюдаемый нейтрон.

Отождествление отдельных вращений структур промежуточного типа с вращениями нейтрино и протонов не следует интерпретировать так, что нейтрино и протоны как таковые реально существуют в комбинационных структурах. Например, на самом деле, это значит, что один из компонентов вращений, составляющих сложный нейтрон, обладает тем же видом вращения, что и нейтрон, составляющий протон, если последний существует отдельно.

Ввиду того, что результирующее общее смещение сложного нейтрона идентично результирующему общему смещению безмассового нейтрона, аспекты поведения частиц (свойства, как они называются), зависящие от результирующего общего смещения, одинаковы. Более того, идентичны и свойства, зависящие от общего магнитного смещения или общего электрического смещения. Но другие свойства, связанные со структурой частицы, у обоих нейтронов разные. Сложный нейтрон обладает действующей единицей трехмерного смещения в системе вращения с вращением по типу протона, следовательно, обладает одной единицей массы. Безмассовый нейтрон не обладает трехмерным смещением и, следовательно, не обладает массой.

| | | | | | | | | | | | |

Субатомная физика необычайно популярна. За исследования в этом направлении ученые часто получают Нобелевскую премию. Неверонятной популярностью пользуются нейтрино. За эту частицу присудили четыре награды. 1988 году отметили открытие мюонного нейтрино. В 1995 году, премию получил Фред Рейнерс за регистрацию нейтрино. В 2002 году Рэй Дэвис и Масатоши Кошиба измерили сколько нейтрино Солнце присылает на Землю. В этом году Такааки Каджита и Артур Макдональд разделили премию за демонстрацию того, как нейтрино могут переходить из одной формы в другую.

Вольфганг Паули, предсказавший нейтрино, тоже получил Нобелевскую премию, но за другое открытие в физике элементарных частиц. Возможно, он бы получил еще одну, за нейтрино, но он опубликовал свое открытие в форме письма для конференции физиков, которую не посетил.

Однако самая популярная субатомная частица не единственный сюрприз микромира. Есть еще десяток разных открытий, которые можно назвать сногсшибательными.

10. Существование субатомных частиц

На протяжении 19-го века под вопросом было само существование атомов, и то благодаря успеху атомной теории в химии, озвученной английским школьным учителем Джоном Дальтоном. До него атомы были отвлеченным философским понятием, которое использовалось в рассуждениях о конечной природе материи, но рассматривалось за пределами экспериментальных исследований. Многие физики, вообще, считали атомы фикцией, удобной для объяснения данных экспериментов, но нереальной.

Данные накапливались, и пришлось признать, что если атомы и не существуют, то должна быть какая-то неделимая структура похожая на них. Камнем, подтверждающим существование атомов, стало повторение свойств элементов в периодической системе Менделеева. В 1897 году Томсон сообщил об открытии первой, элементарной частицы – электрона, которая полностью опровергала неделимость атомов.

9. Атомное ядро

Не успели физики принять идею, что атомы существуют, им пришлось начать мириться с тем, что они состоят из отдельных деталей. Томпсон предположил, что отрицательные электроны плавают, как вишни в положительно заряженном пудинге. Но когда Эрнесту Резерфорду и его помощникам удалось расстрелять альфа-частицами тонкий лист золота, некоторые из «патронов» отскочили назад. Это удивило Резерфорда, по его словам это было бы сравнимо со стрельбой по папиросной бумаге, при которой артиллерийские снаряды отлетали назад. Ученый предположил, что внутри атома находится крошечный шарик, сегодня мы называем их ядрами.

8. Нейтроны

К 1930 году физики знали о существовании двух субатомных частиц: протона и электрона, казалось, они все объясняли, кроме одного, почему положительно заряженные протоны не разлетаются. В 1920 году Резерфорд предположил, что они удерживаются рядом, благодаря еще одной частицы в ядре – нейтрону. В 1932 году Джемс Чедвик обнаружил нейтральную частицу. Количество элементарных частиц постоянно росло.

Открытие нейтрона стало огромной неожиданностью для физиков. Когда Резерфорд выдвинул идею существования нейтрона, ему мало кто поверил, возможно, только Чедвик.

7. Субатомные частицы на самом деле волны

Этот сюрприз связан с довольно комичной историей. В 1906 году Томсон получил Нобелевскую премию за то, что доказал экспериментально существование субатомное частицы – электрона. В 1973 году, его сын Джордж тоже получил эту награду, потому, что ему удалось продемонстрировать: электрон – это волна, по крайней мере, иногда. Эта двойственность волна-частица находится в центре квантовой физики.

6. Обнаружение нейтрино

В 1934 году Бете и Рудольф Пайерлс доказали, что нейтрино слабо взаимодействует с веществом, и глупо было бы пытаться обнаружить хотя бы одно. Понадобиться резервуар твердого вещества с диаметром в 1000 световых лет. Но тут же был обнаружен атомный распад и изобретены ядерные реакторы. Физики получили плодовитый источник нейтрино.

5. Элементарные частицы оказались не такими уж элементарными

Уже к 1950 году было обнаружено множество субатомных частиц, мало того, что неделимый атом оказался, еще как делимым, так и количество его частичек перевалило за полсотни. Один из лауреатов Нобелевской премии Леон Ладерман даже пошутил, что если бы ему нужно было выучить названия всех субатомных частиц, он бы стал ботаником. Физики начали подозревать, что у элементарных частиц, есть свои детали.

4. Кварки

В 1950 году физики узнали о субатомных частицах, которые не являются частью атомов. В 1960 году появилась мысль, что элементарные частицы, состоят из маленьких кирпичиков, которые имеют дробный заряд. Мюррей Гелл-Манн назвал эти частицы кварками, идея была новаторской, так как до этого считалось, что дробные заряды – это нонсенс. Через несколько лет очередной сюрприз от экспериментаторов – удалось подтвердить существование кварков.

3. Нарушение симметрии

Задолго до взрыва открытий субатомных частиц, уважаемый математик Герман Вейль отметил, что природа ничего не знает о паритете. Не может быть сомнений, что все законы природы инвариантны по отношению к перестановке справа и слева. Но в 1956 году Чэнь Нин Ян и Цзун-Дао Ли высказали идею, что правило лево-правой симметрии в некоторых случаях не работало, когда дело касается субатомных частиц. Это было сенсацией, особенно, когда появились подтверждения от экспериментаторов.

2. Стабильность протонов

Вне атомного ядра нейтроны крайне нестабильны и распадаются в течение нескольких минут на протон, электрон и антинейтрино. Но, кажется, что протон необычайно стабилен и может оставаться неделимым вечно. Хотя в 1970 годы теоретики начали верить, что протоны должны распадаться хотя бы за триллионы триллионов лет, несмотря на все усилия по выявлению подобного события ученым не удалось его зафиксировать. Это вызвало большое удивление. Все распадается, а протоны – нет.

1. Антиматерия

В 1932 году был обнаружен не только нейтрон, но и позитрон. Его вычислил Карл Андерсон, анализируя следы космических лучей в камере Вильсона. Среди отпечатков физик нашел тот, который выглядел, как и у электрона, но был изогнут в неправильном направлении. Это оказался позитрон, античастица электрона, Андерсон назвал это положительный электрон. Открытие частиц антиматерии было большой неожиданностью, но вполне отвечало теоретическим выкладкам Поля Дирака. Удивительно, что кто-то мог сделать вывод о существовании чего-то настолько странного, просто играя с уравнениями.

Парадоксы субатомного мира

Давайте подведем некоторые итоги, четко обозначив все известные нам парадоксы субатомного мира.

1. На уровне атома, ядра и элементарной частицы материя имеет двойственный аспект, который в одной ситуации проявляется как частицы, а в другой – как волны. Причем частица имеет более или менее определенное местоположение, а волна распространяется во все стороны в пространстве.

2. Двойственная природа материи обусловливает «квантовый эффект», заключающийся в том, что находящаяся в ограниченном объеме пространства частица начинает усиленно двигаться, и чем значительнее ограничение, тем выше скорость. Результатом типичного «квантового эффекта» является твердость материи, идентичность атомов одного химического элемента и их высокая механическая устойчивость.

Поскольку ограничения объема атома и уж тем более ядра весьма значительны, скорости движения частиц чрезвычайно велики. Для исследования субатомного мира приходится использовать релятивистскую физику.

3. Атом вовсе не подобен маленькой планетарной системе. Вокруг ядра вращаются не частицы – электроны, а вероятностные волны, причем электрон может переходить с орбиты на орбиту, поглощая или испуская энергию в виде фотона.

4. На субатомном уровне существуют не твердые материальные объекты классической физики, а волновые вероятностные модели , которые отражают вероятность существования взаимосвязей.

5. Элементарные частицы вовсе не элементарны, а чрезвычайно сложны.

6. Всем известным элементарным частицам соответствуют свои античастицы. Пары частиц и античастиц возникают при наличии достаточного количества энергии и превращаются в чистую энергию при обратном процессе аннигиляции.

7. При столкновениях частицы способны переходить одна в другую: например, при столкновении протона и нейтрона рождается пи-мезон и т. д.

8. Никакой эксперимент не может привести к одновременно точному измерению динамических переменных: например, неопределенность положения события во времени оказывается связанной с неопределенностью количества энергии точно так же, как неопределенность пространственного положения частицы обнаруживает связь с неопределенностью ее импульса.

9. Масса является одной из форм энергии; поскольку энергия – это динамическая величина, связанная с процессом, частица воспринимается как динамический процесс, использующий энергию, которая проявляет себя в виде массы частицы.

10. Субатомные частицы одновременно делимы и неделимы. В процессе столкновения энергия двух частиц перераспределяется и образуются такие же частицы. А если энергия достаточно велика, то помимо таких же, как исходные, могут образоваться дополнительно новые частицы.

11. Силы взаимного притяжения и отталкивания между частицами способны преобразовываться в такие же частицы.

12. Мир частиц нельзя разложить на независящие друг от друга мельчайшие составляющие; частица не может быть изолированной.

13. Внутри атома материя не существует в определенных местах, а, скорее, «может существовать»; атомные явления не происходят в определенных местах и определенным образом наверняка, а, скорее, «могут происходить».

14. На результат эксперимента влияет система подготовки и измерения, конечным звеном которой является наблюдатель. Свойства объекта имеют значение только в контексте взаимодействия объекта с наблюдателем, ибо наблюдатель решает, каким образом он будет осуществлять измерения, и в зависимости от своего решения получает характеристику свойства наблюдаемого объекта.

15. В субатомном мире действуют нелокальные связи.

Казалось бы, достаточно сложностей и неразберихи в субатомном мире, лежащем в основе макромира. Но нет! Это еще не все.

Реальность, которая была открыта в результате изучения субатомного мира, обнаружила единство понятий, казавшихся до сих пор противоположными и даже непримиримыми. Мало того что частицы одновременно делимы и неделимы, вещество одновременно прерывисто и непрерывно, энергия превращается в частицы и наоборот и т. д., релятивистская физика объединила даже понятия пространства и времени. Именно это основополагающее единство, которое существует в более высоком измерении (четырехмерное пространство-время), является основой для объединения всех противоположных понятий.

Введение понятия вероятностных волн, которое в определенной степени решило парадокс «частица – волна», переместив его в совершенно новый контекст, привело к возникновению новой пары гораздо более глобальных противопоставлений: существования и несуществования (1). Атомная реальность лежит за пределами и этого противопоставления.

Возможно, это противопоставление наиболее трудно для восприятия со стороны нашего сознания. В физике можно построить конкретные модели, показывающие переход из состояния частиц в состояние волн и обратно. Но никакая модель не может объяснить переход от существования к несуществованию. Никакой физический процесс нельзя использовать для объяснения перехода из состояния, называемого виртуальной частицей, к состоянию покоя в вакууме, где эти объекты исчезают.

Мы не можем утверждать, что атомная частица существует в той или иной точке, и не можем утверждать, что ее там нет. Будучи вероятностной схемой, частица может существовать (одновременно!) в разных точках и представлять собой странную разновидность физической реальности, нечто среднее между существованием и несуществованием. Поэтому мы не можем описать состояние частицы в терминах фиксированных противопоставленных понятий (черное – белое, плюс – минус, холодно – тепло и т. д.). Частица не находится в определенной точке и не отсутствует там. Она не перемещается и не покоится. Изменяется только вероятная схема, то есть тенденция частицы находиться в определенных точках.

Точнее всего этот парадокс выразил Роберт Оппенгеймер, сказав: «Если мы спросим, например, постоянно ли нахождение электрона, нужно сказать „нет“, если мы спросим, изменяется ли местонахождения электрона с течением времени, нужно сказать „нет“, если мы спросим, неподвижен ли электрон, нужно сказать „нет“, если мы спросим, движется ли он, нужно сказать „нет“». Лучше не скажешь!

Не случайно В. Гейзенберг признавался: «Я помню многочисленные споры с Богом до поздней ночи, завершавшиеся признанием нашей беспомощности; когда после спора я выходил на прогулку в соседний парк, я вновь и вновь задавал себе один и тот же вопрос: „Разве может быть в природе столько абсурда, сколько мы видим в результатах атомных экспериментов?“»

Такие пары противоположных понятий, как сила и материя, частица и волна, движение и покой, существование и несуществование, объединенные в одновременное единство, представляют собой сегодня самое сложное для осознания положение квантовой теории. С какими еще парадоксами, переворачивающими все наши представления с ног на голову, столкнется наука, трудно предсказать

Бушующий мир . Но и это еще не все. Способность частиц реагировать на сжатие путем увеличения скорости движения говорит о фундаментальной подвижности материи, которая становится очевидной при углублении в субатомный мир. В этом мире большинство частиц приковано к молекулярным, атомным и ядерным структурам, и все они не покоятся, а находятся в состоянии хаотического движения; они подвижны по своей природе. Квантовая теория показывает, что вещество постоянно движется, не оставаясь ни на миг в состоянии покоя.

Например, взяв в руки кусок железа, мы не слышим и не чувствуем этого движения, оно, железо, кажется нам неподвижным и пассивным. Но стоит рассмотреть этот «мертвый» кусок железа под очень сильным микроскопом, который позволит нам увидеть все, что творится в атоме, мы увидим нечто совершенно другое. Давайте вспомним модель атома железа, в котором двадцать шесть электронов вращаются вокруг ядра, состоящего из двадцати шести протонов и тридцати нейтронов. Стремительный вихрь двадцати шести электронов вокруг ядра подобен хаотическому и постоянно изменяющемуся рою насекомых. Просто удивительно, как эти бешено вращающиеся электроны не сталкиваются друг с другом. Создается впечатление, что внутри каждого имеется встроенный механизм, бдительно следящий за тем, чтобы они не сталкивались.

А если мы заглянем в ядро, то увидим протоны и нейтроны, танцующие в бешеном ритме ламбаду, причем танцоры чередуются и пары меняют партнеров. Словом, в «мертвом» металле в буквальном и фигуральном смысле царит такое разнообразное движение протонов, нейтронов и электронов, которое просто невозможно себе представить.

Этот многослойный бушующий мир состоит из атомов и субатомных частиц, движущихся по различным орбитам с дикой скоростью, «танцующих» замечательный танец жизни под музыку, которую кто-то сочинил. Но ведь все материальные предметы, которые мы видим вокруг себя, состоят из атомов, связанных между собой внутримолекулярными связями различного типа и образующих таким образом молекулы. Только электроны в молекуле совершают движение не вокруг каждого атомного ядра, а вокруг группы атомов. И эти молекулы также находятся в беспрестанном хаотическом колебательном движении, характер которых зависит от термических условий вокруг атомов.

Словом, в субатомном и атомном мире безраздельно властвуют ритм, движение и непрестанное изменение. Но все изменения не случайны и не произвольны. Они следуют очень четким и ясным закономерностям: все частицы той или иной разновидности абсолютно идентичны по массе, величине электрического заряда и другим характерным показателям; все заряженные частицы имеют электрический заряд, который либо равен заряду электрона, либо противоположен ему по знаку, либо превышает его в два раза; и остальные характеристики частиц могут принимать не любые произвольные значения, а только ограниченное их количество, что позволяет ученым разделить частицы на несколько групп, которые могут быть также названы «семьями» (24).

Невольно напрашиваются вопросы: кто сочинил музыку для удивительного танца субатомных частиц, кто задал информационную программу и научил пары танцевать, в какой момент начался этот танец? Иными словами: как образуется материя, кто ее создал, когда это случилось? Это те вопросы, на которые наука ищет ответы.

К сожалению, наше мировосприятие характеризуется ограниченностью и приблизительностью. Наше ограниченное понимание природы приводит к разработке ограниченных «законов природы», которые позволяют описать большое количество явлений, но самые важные законы мироздания, влияющие на мировоззрение человека, по-прежнему во многом остаются для нас неизведанными.

«Позиция большинства физиков напоминает мировосприятие шизофреника, – говорит теоретик квантовой физики Фриц Рорлих из Сиракузского университета. – С одной стороны, они принимают стандартное толкование квантовой теории. С другой стороны, они настаивают на реальности квантовых систем, даже если таковые принципиально ненаблюдаемы».

Действительно странная позиция, которую можно выразить так: «Я не собираюсь думать об этом, даже если я знаю, что это правда». Эта позиция удерживает многих физиков от рассмотрения логических следствий из наиболее поразительных открытий квантовой физики. Как указывает Дэвид Мермин из Корнельского университета, физики подразделяются на три категории: первая – незначительное меньшинство, которому не дают покоя сами собой напрашивающиеся логические следствия; вторая – группа, уходящая от проблемы с помощью множества соображений и доводов, по большей части несостоятельных; и, наконец, третья категория – те, у кого нет никаких соображений, но это их не волнует. «Такая позиция, конечно, самая удобная», – отмечает Мермин (1).

Тем не менее ученые осознают, что все их теории, описывающие явления природы, включая и описание «законов», представляют собой продукт человеческого сознания, следствия понятийной структуры нашей картины мира, а не свойства самой реальности. Все научные модели и теории представляют собой лишь приближения к истинному положению дел. Ни одна из них не может претендовать на истину в последней инстанции. Неокончательность теорий проявляется прежде всего в использовании так называемых «фундаментальных констант», то есть величин, значения которых не выводятся из соответствующих теорий, а определяются эмпирически. Квантовая теория не может объяснить, почему электрон обладает именно такой массой и таким электрическим зарядом, а теория относительности не может объяснить именно такую величину скорости света.

Безусловно, наука никогда не сумеет создать идеальную теорию, которая объяснит все, но она постоянно должна стремиться к этому, пусть даже недостижимому рубежу. Ибо чем выше установлена планка, через которую должен перепрыгнуть прыгун, тем большую высоту он возьмет, даже если не установит рекорда. И ученые, как прыгун на тренировках, постоянно поднимают планку, последовательно разрабатывая отдельные частные и приблизительные теории, каждая из которых является более точной, чем предыдущая.

Сегодня наука уже располагает рядом частных теорий и моделей, достаточно успешно описывающих некоторые стороны волнующей нас волновой квантовой реальности. Как считают многие ученые, наиболее перспективными теориями – точками опоры для дальнейшего развития теоретической физики, опирающейся на сознание, являются гипотеза «бутстрапа» Джеффри Чу, теория Дэвида Бома и теория торсионных полей. А уникальные экспериментальные работы российских ученых под руководством академика В. П. Казначеева в значительной степени подтверждают правильность подходов в исследовании Вселенной и Сознания, заложенных в указанных гипотезах и теориях.

Из книги Гиперборейское учение автора Татищев Б Ю

2. 1. Парадоксы современной России. Времена изменились. Теперешним «демократом» для продолжения грабежа России и её народа приходится прилагать некоторые усилия для «стабилизации экономики». А у «патриотов - державников» давно уже прошли все сроки, отпущенные им на

Из книги Феномены иных миров автора Кульский Александр

Глава 11. ПАРАДОКСЫ, КОТОРЫХ НЕ БЫЛО Одним из самых краеугольных, фундаментальных камней, лежащих в основании традиционной физики и философии, является принцип причинности. То есть «железной» однонаправленности во взаимоотношениях причины и следствия. Сперва, стало быть,

Из книги Основы физики духа автора Скляров Андрей Юрьевич

Глава 6. Активные и пассивные объекты духовно-нематериального мира как аналог живого и неживого материального мира. «Все живо, но условно мы считаем живым только то, что достаточно сильно чувствует». К.Циолковский В материальном макромире, как известно, вещество (как один

Из книги Последний завет Дон Хуана: магия толтеков и эзотерика духовности автора Каптен (Омкаров) Юри (Артур) Леонардович

6. ПАРАДОКСЫ ЗДОРОВЬЯ С ПОЗИЦИЙ МАГИИ И ДУХОВНОСТИ Хотя многие аспекты магии самоисцеления уже были отмечены выше, и мне не раз пришлось повторяться, имеет смысл систематизировать и свести вместе моменты, связанные с обретением несокрушимого здоровья посредством

Из книги НЛО:Визитеры из вечности автора Комиссаров Виталий Сергеевич

Парадоксы древних знаний "…Bукоренившихся у нас взглядах на прошлое пращур неолита всегда представлялся в образе мохнатого детинушки, гоняющегося за мамонтом. Но неожиданные открытия посыпались одно за другим…" Кем были наши предки? На этот вопрос, казалось, давно был

Из книги Природа времени: Гипотеза о происхождении и физической сущности времени автора Бич Анатолий Макарович

3.3. Загадки и парадоксы времени Сомнения по поводу того, включать или не включать в настоящую работу этот раздел, не оставляли меня до последней минуты. С одной стороны, я хотел бы попытаться объяснить некоторые загадки времени и феномены парапсихологии, но с другой - это

Из книги Жизнь без границ. Нравственный закон автора

3.3.1. Физические парадоксы времени «Летом 1912 г. …газеты Великобритании описали загадочную историю, произошедшую в железнодорожном экспрессе, следовавшем из Лондона в Глазго. Свидетелями происшествия в одном из вагонов оказались двое незнакомых друг другу пассажиров -

Из книги Учение жизни автора Рерих Елена Ивановна

Из книги Книга 3. Пути. Дороги. Встречи автора Сидоров Георгий Алексеевич

Из книги Учение жизни автора Рерих Елена Ивановна

Из книги Искусство управления миром автора Виногродский Бронислав Брониславович

[Символ сокрытия Матерью Мира Своего Лика от мира] Напомню Вам, что Матерь Мира скрыла Свой Лик от человечества также и в силу космических причин. Ибо, когда Люцифер решил унизить женщину для захвата власти над человечеством, космические условия благоприятствовали такому

Из книги Жизнь без границ. Нравственный Закон автора Жикаренцев Владимир Васильевич

Управление состояниями Парадоксы сознания Как только возникает желание улучшить свое состояние, значит, произошло ухудшение. Как только собираешься совершенствовать себя, значит, обнаружил новые несовершенства.Намерение рождается там, где обнаруживается его

Из книги Как сны и почерк помогут исправить ошибки прошлого автора Энтис Джек

Управление состояниями Парадоксы великого Принципы развития сознания можно выразить устойчивыми определениями:Внутреннее состояние ясности в понимании совершенства может проявляться вовне как тьма непонимания.Внутреннее состояние продвижения по пути совершенного

Из книги Код бессмертия. Правда и мифы о вечной жизни автора Прокопенко Игорь Станиславович

Парадоксы русской жизни Законы и логика в России не работают, потому что главным законом в нашей стране является сердце, центр, где сходятся все противоположности. Сердце судит о мире, людях и явлениях, исходя из единства мира и вещей, поэтому для него нет законов,

Из книги автора

Глава 14 Сны, которые нас будят (Или сны-парадоксы) ВЕЩИЕ, или предсказательные, сны чаще всего мы отличаем по яркой раскраске и остроте ощущений. Но так же и по ПАРАДОКСАЛЬНОСТИ сюжета или образа…Вернёмся к нашей Алисе.Я вырву из контекста парадоксально связанные образы

Из книги автора

Глава 3. Парадоксы долголетия Летом 2013 года ученые сделали сенсационный прогноз: буквально через 10 лет средний срок жизни человека может увеличиться вдвое, а в более далекой перспективе есть возможность победить старение, а затем и смерть.Немецкие ученые из Кильского

Субатомные электроны, протоны частицы и нейтроны

Первую современную атомистическую теорию выдвинул Джон Дальтон. Он предположил, что каждый химический элемент состоит из атомов, одинаковых по размерам и массе. Эти частицы предполагались неделимыми и неизменными в ходе химической реакции. Дальтон приписал атомам таких элементов, как водород, кислород, азот и сера, определенные относительные веса (точнее, массы), а также дал каждому элементу определенный символ.

Однако в конце XIX века был сделан рад открытий, показавших, что атом вовсе не является неделимой частицей, а состоит из субатомных частиц. Первое из этих открытий основывалось на изучении лучей, испускаемых отрицательно заряженным электродом. Существование этих катодных лучей было продемонстрировано в 70-х годах XIX века в целом раде экспериментов, которые выполнили Крукс и Гольдштейн. Например, в эксперименте Крукса с турбинкой катодные лучи вращали крохотную турбинку на стеклянной подвеске. В 1895 г. Вильгельм Рентген открыл Х-лучи, названные в дальнейшем рентгеновскими лучами. В следующем году Антуан Анри Беккерель показал, что соль урана самопроизвольно испускает невидимое излучение, подобное рентгеновским лучам; явление было названо радиоактивностью. За свои исследования Рентген и Беккерель были удостоены Нобелевской премии.

Электрон.

Электрон был первой из обнаруженных субатомных частиц. В 1874 г. Дж. Дж. Стоней предположил, что электрический ток представляет собой поток отрицательно заряженных частиц, названных им в 1891 г. электронами. Однако приоритет открытия электрона почти повсеместно признается за Дж. Дж. Томсоном, который определил удельный заряд и относительную массу электрона.

Джозеф Джон Томсон, открывший электрон в 1897 г. Лауреат Нобелевской премии по физике 1906 г. Его сын, Джордж Паджет Томсон своими исследованиями дифракции электронов при прохождении через золотую фольгу подтвердил теорию Луи де Бройля, согласно которой свободные электроны ведут себя одновременно как волны и как частицы. Дж. Паджет Томсон получил вместе с К. Дэвиссоном Нобелевскую премию по физике в 1937 г. за открытие дифракции электронов на кристаллах.

Рис. 1.1. Прибор Томсона, 1 - катод (-); 2 - анод (+) с отверстием; 3 - вторичные электроды для отклонения катодных лучей; 4 - отклоненное пятно; 5 - неотклоненное пятно; 6 - люминесцентный экран.

Р. Э. Милликен.

Р. С. Малликен.

Иногда из-за сходства фамилий путают Милликена с Малликеном. Оба они лауреаты Нобелевской премии.

Роберт Эндрус Милликен - американский физик, который определил заряд электрона в опытах с капельками масла. В этом эксперименте он создавал электрические заряды на мельчайших капельках масла, воздействуя на них рентгеновскими лучами. Капельки медленно оседали в пространстве между двумя горизонтальными пластинами конденсатора. Массу отдельной капельки можно было определить, измеряя скорость ее падения. Затем пластины конденсатора заряжали, и это приводило к изменению скорости падения заряженных капелек. Измерение скорости капелек позволяло Милликену вычислить находящиеся на них заряды. Хотя заряды на капельках были неодинаковыми, обнаружилось, что все они кратны некоторой величине, которая представляет собой заряд электрона. Милликен получил Нобелевскую премию по физике в 1923 г.

Роберт Сандерсон Малликен - американский химик и физик, награжден Нобелевской премией по химии в 1966 г. за теоретические исследования природы химической связи и молекулярной структуры. В 1920-е годы применил квантовую механику к теоретическому описанию химической связи и интерпретации молекулярных спектров. В частности, ввел представление о молекулярных орбиталях и показал, что электроны могут быть делокализованы на связях, описываемых молекулярными орбиталями (см. гл. 2).

Томсон открыл электрон в результате исследований с катодными лучами. Схематическое изображение разрядной трубки, которой он пользовался для получения катодных лучей, показано на рис. 1.1. Создав в разрядной трубке низкое давление и высокое напряжение (1500 В и выше), Томсон получил катодные лучи, которые образовывали на люминесцентном экране хорошо заметное пятно. Это пятно можно было отклонять в сторону с помощью электрического поля, создаваемого вторичными электродами. Пятно отклонялось в сторону также под действием магнитного поля, направленного перпендикулярно электрическому полю (это не показано на рисунке). Указанные наблюдения привели Томсона к выводу, что катодные лучи представляют собой поток отрицательно заряженных частиц, названных электронами. Проводя измерения напряженности магнитного и электрического полей и соответствующего

Рис. 1.2. Каналовые лучи, открытые Гольдштейном. 1 - анод (+); 2 - катод (-) с отверстиями; 3 - вторичный электрод для отклонения каналовых лучей.

отклонения пятна. Томсон смог вычислить отношение заряда к массе для этих частиц. Он установил, что независимо от того, какой газ использовался для наполнения разрядной трубки, значение оставалось неизменным. На этом основании Томсон заключил, что атомы всех элементов содержат электроны.

В 1909 г. Р.Э. Милликен, проводя свои знаменитые эксперименты с капельками масла, определил заряд электрона. В сочетании с найденным Томсоном значением отношения это позволяло вычислить массу электрона. Принятые в настоящее время значения этих величин составляют

Протон.

Второй по очередности открытия субатомных частиц был протон. В 1886 г. Гольдштейн наблюдал положительно заряженные лучи, испускаемые перфорированным катодом. Он назвал их каналовыми лучами (рис. 1.2).

В 1899 г. Резерфорд открыл радиоактивное и -излучение. Приблизительно в то же время Томсон предложил свою модель строения атома, позволяющую объяснить наличие у атома отрицательно и положительно заряженных частей (модель «сливового пудинга», см. ниже).

Эрнест Резерфорд.

Эрнест Резерфорд родился в Новой Зеландии 30 августа 1871 г. В возрасте 27 лет стал профессором физики в Университете Мак-Гилла в канадском городе Монреале и вскоре сделался одним из ведущих специалистов в быстро развивавшейся области исследования радиоактивности. Он открыл несколько радиоактивных элементов и установил наличие двух типов радиоактивного излучения: и -излучение. Вместе с Фредериком Содди он обнаружил, что радиоактивность характеризуется определенным периодом полураспада. В 1907 г. Резерфорд переехал в Англию, где в Манчестерском университете в 1909 г. вместе с Хансом Гейгером еще раз доказал, что -частицы представляют собой двухзарядные ионы гелия. В 1908 г. Резерфорд получил Нобелевскую премию за исследования радиоактивности. В 1910 г. вместе с Гейгером и Марсденом он обнаружил, что -частицы, проходящие через тонкую металлическую фольгу, отклоняются от первоначального направления движения. Это открытие привело Резерфорда в 1911 г. к созданию новой, планетарной, модели строения атома. В 1914 г. он высказал предположение о существовании протона, а в 1920 г. предсказал существование нейтрона. За научные заслуги в 1914 г. Резерфорд по английскому обычаю был возведен в рыцарское достоинство, а в 1921 г. награжден орденом «За заслуги». С 1915 по 1930 г. он был президентом Лондонского королевского общества, а в 1931 г. получил титул пэра. Ои умер 19 октября 1937 г. Резерфорд, несомненно, является одним из самых выдающихся ученых XX века.

Рис. 1.3. Эксперимент Гейгера и Марсдена. а - рассеяние а-частиц после пропускания через листок тонкой золотой фольги. Большинство частиц проходят сквозь фольгу без отклонений, но отдельные частицы рикошетируют обратно, по направлению к источнику; б - согласно предположению Резерфорда, рикошетирующие частицы испытывают столкновение с сердцевиной атома его ядром. Это наблюдение заставило Резерфорда выдвинуть новую модель строения атома.

В 1909 г. Резерфорд показал, что обнаруженное им ранее -излучение обусловлено положительно заряженными атомами гелия. Однако установление истинной природы этих положительных частиц произошло лишь в 1914 г. после знаменитого эксперимента Гейгера и Марсдена.

Ханс Гейгер и Эрнест Марсден были студентами Резерфорда. В 1910 г. они проводили эксперименты, в которых бомбардировали тонкие листки золотой фольги пучком а-частиц (рис. 1.3). Одни а-частицы проходили через фольгу без отклонения (линия А), другие отклонялись от первоначального направления (линия В). Ко всеобщему удивлению, приблизительно 1 из 20 000 частиц отклонялась назад (линия С). «Это было почти столь же невероятно, - рассказывал Резерфорд впоследствии, - как если бы вы стреляли 15-дюймовым снарядом по куску папиросной бумаги, а снаряд рикошетом вернулся назад и попал в вас». Из этого эксперимента следовало, что в центре атома находится очень малое положительно заряженное ядро, окруженное относительно удаленными от него легкими отрицательно заряженными электронами.

После этого Резерфорд предсказал существование протона и показал, что его масса более чем в 1800 раз должна превышать массу электрона.

Нейтрон.

Существование нейтрона было предсказано Резерфордом в 1920 г., чтобы объяснить различие между атомной массой и атомным номером (см. ниже). Экспериментально нейтрон был обнаружен в 1932 г. Дж. Чедвиком при изучении результатов

бомбардировки бериллия а-частицами. Бериллий испускал при этом частицы с большой проникающей способностью, которые не отклонялись в электрическом и магнитном полях. Поскольку эти частицы были нейтральными, они получили название нейтронов.

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...