Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Средства связи с атомными подводными лодками сша. Связь с подводными лодками

Радио — это один из видов беспроводной связи, в нем носителем сигнала является радиоволна, которая широко распространяется на расстоянии. Есть мнение, что нельзя передавать радиосигналы под водой. Попробуем разобраться, почему нельзя осуществлять радиосвязь между подводными лодками, и так ли это на самом деле.

Как работает радио связь между подводными лодками:

Распространение радио волн осуществляется по такому принципу: тот, кто передает сигнал, с определенной частотой и мощностью, устанавливает радиоволну. После чего, отосланный сигнал модулирует на высокочастотное колебание. Подхваченный модулированный сигнал исходит специальной антенной на определенные расстояния. Там где получают сигнал радиоволны, к антенне устремляют модулированный сигнал, который сначала отфильтровывается и демодулируется. И только потом мы можем получить сигнал, с некой различаемостью с сигналом, тем, что был передан изначально.
Радиоволны с самым низким диапазоном (ОНЧ, VLF, 3—30 кГц) без проблем пробиваются сквозь морскую воду, до 20 метровой глубины.

Например, подводная лодка, которая находится не так уж глубоко под водой, смогла бы применить этот диапазон для установки и поддержания связи с экипажем. А если мы возьмем подводную лодку, но находящуюся на много глубже под водой, и у нее будет длинный кабель, на котором прикреплен буй с антенной, то она тоже сможет использовать этот диапазон. За счет того что буй установлен на глубине нескольких метров, да еще и имеет маленькие габариты, его очень проблематично отыскать сонарами врагов. «Голиаф», является одним из первых ОНЧ-передатчиков, сооруженный во времена Второй Мировой (1943 г.) в Германии, после окончания войны был переправлен в СССР, а в 1949—1952 годах реанимирован в Нижегородской области и используется там по сей день.

Аэрофотография КНЧ-передатчика (Клэм Лэйк, Висконсин, 1982)

Радиоволны самой низкой частоты (КНЧ, ELF, до 3 кГц) с легкостью проникают сквозь Земную кору и моря. Создание КНЧ-передатчика — из-за громадной длинны волн, ужасно трудная задача.К примеру советская система «ЗЕВС» вырабатывает частоту 82 Гц (длина волны — 3658,5 км) ,а американская «Seafarer» — 76 Гц (длина волны — 3947,4 км) . Их волны соизмеримыс радиусом Земли. От сюда мы видим, что возведение дипольной антенны в половину длины волны (протяжённостью ≈ 2000 км) — недостижимая на текущем этапе цель.

Подводя итоги всему, что было сказано выше, нам необходимо отыскать такую часть земной поверхности, которая будет характеризоваться относительно низкой проводимостью, и присоединить к ней 2 гигантских электрода, которые бы располагались на расстоянии 60 километров относительно друг друга.

Так как нам известна удельная проводимость Земли по части электродов удовлетворительно находится на низком уровне, таким образом, электрический ток между электродами проникал бы фундаментально в глубь недров нашей планеты, применяя их как элемент гигантской антенны. Нужно заметить, что первоисточником необыкновенно высочайших технических трудностей такой антенны, лишь у СССР и США числились КНЧ-передатчики.

Обеспечение надежной связи с атомными подводными лодками, несущими дежурство на океанических просторах, без ухудшения параметров их скрытности, всегда было непростой технической задачей.

Основная задача атомных подводных лодок с баллистическими ракетами (ПЛАРБ) — гарантированный ракетно-ядерный удар. Поэтому главное требование к ним — возможность длительного незаметного патрулирования. При этом ПЛАРБ должна быть обеспечена связью для возможности получения сигналов боевого управления и информацию об оперативной обстановке.

Использование традиционной радиосвязи под водой затруднительно, т. к. радиоволны традиционных частот довольно быстро поглощаются в морской воде. Поэтому для связи с ПЛАРБ применяются специальные технические решения.

НА ПЕРИСКОПНОЙ ГЛУБИНЕ

Подводные лодки в надводном положении или на перископной глубине могут использовать для связи обычный диапазон радиочастот. Как правило, это УКВ-спутниковая связь. Американские АПЛ используют систему SSIXS (Satellite Information Exchange Subsystem — «спутниковая подсистема обмена информацией с подводными лодками»), которая работает через UHF SATCOM — систему спутников, находящихся на геостационарной орбите.

Российские ПЛАРБ имеют комплекс связи «Молния-М» с системой космической связи «Цунами-АМ». Чтобы ПЛАРБ находилась на поверхности или на перископной глубине минимальное время, связь осуществляется в цифровом виде посредством высокоскоростной передачи данных. Но этот способ связи допустим только в чрезвычайных случаях, т. к. лишает АПЛ главного преимущества — скрытности патрулирования. Даже на глубине нескольких десятков метров, куда проникают радиоволны СВ- и КВ-диапазона, субмарина легко может быть обнаружена. Необходимы средства связи для рабочих глубин.

Один из вариантов — шлейфная антенна, или «плавающий кабель», используемая для связи в СВ-диапазоне. Она представляет собой длинный кабель с положительной плавучестью. При движении субмарины на глубине шлейфная антенна выпускается и всплывает к поверхности для приема радиосигналов. Существенным недостатком такой системы является простота ее визуального обнаружения с самолетов или спутников, а также гидроакустическими средствами. Кроме того, использовать ее можно лишь на малом ходе ПЛ.

ДЛИННЫЕ И СВЕРХДЛИННЫЕ РАДИОВОЛНЫ

Для связи с подводными лодками на глубине в настоящее время используют следующие радиодиапазоны: длинные волны (ДВ, 30-300 КГц), сверхдлинные волны (СДВ, 3-30 кГц), а также диапазоны инфранизких (ИНЧ, 300-3000 Гц) и крайне низких частот (КНЧ, 3-300 Гц). Радиоволны этих диапазонов легко проходят сквозь толщу воды, а ИНЧ и КНЧ — сквозь земную кору. И чем ниже частота, тем большей глубины может достичь сигнал. Кроме того, они распространяются от передатчика на десятки тысяч километров, достигая любой точки Мирового океана. Но с низкими диапазонами частот (сверхбольшими длинами волн) возникают следующие технические сложности: огромные размеры передающих антенн (сотни и тысячи метров) и слишком большая необходимая мощность передатчика (3-5 МВт). Кроме того, при таких частотах сигнал очень трудно модулировать, а значит трудно обеспечить надлежащую помехозащищенность и, главное, невозможно передавать быстро большое количество информации. В качестве приемных антенн для ДВ- и СДВ-диапазона на АПЛ используются схемы типа «буксируемый буй» или «рамка», снабженные устройствами автоматического контроля глубины для удержания антенны на заданной глубине при различных скоростях хода.

НА САМОЛЕТАХ

Уязвимость огромных антенн от ядерных ударов противника потребовала разработки резервных систем СДВ-связи, размещенных на самолетах-ретрансляторах, получившая в США наименование ТАКАМО. Система базируется на самолетах Боинг Е-6 «Меркурий», которые сменили прежние носители — ЕС-130.

Для связи с АПЛ в ВМФ России используются самолеты-ретрансляторы Ту-142МР «Орел» и воздушный командный пункт Ил-80. Самолеты имеют выпускную буксируемую тросовую антенну длиной 8,6 км и приемопередатчик СДВ-диапазона большой мощности (Р-826ПЛ «Фрегат»), Самолеты совершают полет по круговой траектории диаметром около 200 км в районе расположения АПЛ, обеспечивая надежную передачу СДВ-сигнала.

Средства связи с атомными подводными лодками США

Капитан 1 ранга запаса А.Марков

В планах Пентагона важная роль во всеобщей ядерной войне отводится атомным ракетным подводным лодкам (ПЛАРБ), которые уже в мирное время находятся в районах патрулирования в постоянной готовности выполнить приказ на пуск ракет по объектам противника. Атомные многоцелевые подводные лодки (ПЛА), решая задачи разведки, патрулируют на противолодочных рубежах, обеспечивают деятельность ударных сил флота и всегда готовы использовать свое оружие (торпеды и крылатые ракеты, в том числе противокорабельные).
Американские подводные силы развиваются в направлении как усиления их боевой мощи, так и повышения их неуязвимости для воздействия противника. К числу важнейших мер, обеспечивающих скрытность деятельности подводных лодок, американское командование относит: особый оперативный режим их использования; снижение уровня физических полей, прежде всего акустических и электрических; применение надежной системы управления. Совершенствование действующих, а также разработка и создание новых систем и средств связи с подводными лодками, особенно находящимися на больших глубинах, являются, как сообщает иностранная печать, основой поддержания их в высокой боевой готовности.
Надежное управление ПЛА в подводном положении представляет собой достаточно сложную проблему, над решением которой, как указывает зарубежная пресса, американские специалисты работают более 20 лет. Главная трудность заключается в том, чтобы радиосигнал преодолел толщу воды, где его энергия поглощается в зависимости от длины волны, а также удаления приемника от передатчика, его мощности, глубины приема сигналов, скорости перемещения антенны и ряда других факторов. Степень поглощения сигналов и глубина их проникновения в водную среду показаны на рис. 1.
Современное развитие электронной техники позволяет достаточно широко использовать для связи с подводными лодками длинноволновый (ДВ) и сверхдлинноволновый (СДВ) диапазоны. Использование более низкого так называемого диапазона чрезвычайно низких частот (ЧНЧ) связано с необходимостью применять излучения значительной мощности и сложные антенны больших размеров. Передача сообщений через водную среду в высокочастотном (оптическом) диапазоне волн требует концентрации энергии в узконаправленном луче и связана с применением лазерной техники над районом нахождения подводной лодки.
В настоящее время ПЛА управляются через сеть береговых узлов и центров связи. Они расположены во всех важных районах мира, примыкающих к акваториям, где действуют подводные лодки США. Радиостанции ведут циркулярные передачи для них бесквитанционным способом. Чтобы повысить надежность связи, на каждый район театра работает не менее двух радиостанций, которые, используя УКВ, KB, ДВ и СДВ диапазоны волн, неоднократно повторяют основные сообщения.

Передачи в УКВ диапазоне осуществляются в пределах. прямой видимости или через спутниковую систему (диапазон 225 - 400 МГц) "Флитсатком", которая во второй половине 80-х годов будет заменена системой "Лисат". Четыре спутника последней уже выведены на стационарные орбиты.
Один из каналов спутниковой системы (полоса пропускания 25 кГц) предназначен для ретрансляции циркулярных передач по флоту, в том числе и для подводных лодок. При этом передачи в звене "земля - ИСЗ" ведутся в сантиметровом диапазоне, а "ИСЗ - корабль" - в дециметровом. Для циркулярных передач используются наземные станции AN/FSC-79, расположенные в основных центрах связи ВМС в Норфолке (США), Гонолулу (Гавайские о-ва), Неаполе (Италия), на о-вах Гуам (Тихий океан) и Диего-Гарсия (Индийский океан). На ПЛА эти передачи принимаются единым в ВМС США приемником AN/SRR-1. В целях обеспечения надежности связи и повышения пропускной способности канала циркулярных передач в адрес ПЛ используется аппаратура цифровой связи, позволяющая передавать информацию со скоростью 2400 бит/с. Аппаратура размещена на береговом узле связи (УС) и подводной лодке, и с ее помощью можно вести высокоскоростную передачу также с лодки на берег.
KB диапазон (3-30 МГц) по отношению к другим диапазонам используется как резервный, так как прохождение его радиоволн недостаточно устойчиво и он подвержен радиопротиводействию. Для установления связи и передачи сообщения требуется значительное время.
Принимать сигналы в УКВ и KB диапазонах подводные лодки могут только в надводном положении или на перископной глубине на выдвижные антенны.
Большинство береговых узлов связи ВМС США, а также американские радиостанции, расположенные в странах Европы и в западной части Тихого океана, оборудованы длинноволновыми передатчиками, обеспечивающими связь. на дальности 3- 4 тыс. км. Основные береговые УС имеют СДВ передатчики (3-30 кГц), которые обеспечивают связь с подводными лодками на расстоянии до 16 тыс. км. В ВМС США в настоящее время есть семь таких узлов, три из них - Аннаполис (г. Вашингтон), Луалуалей (Гавайские о-ва) и Бальбоа (зона Панамского канала) - были построены до второй мировой войны и уже несколько раз модернизировались. В 60- 70-х годах созданы радиоцентры Катлер (штат Мэн), Джим-Крик (Вашингтон), Норт-Вест-Кап (Австралия) и Сан-Франциско (штат Калифорния). Передающий радиоцентр Катлер оборудован одним передатчиком мощностью 2000 кВт, Джим-Крик- двумя по 1000 кВт, а остальные- по 1000 кВт. Их основные рабочие частоты 14-35 кГц.
В зарубежной печати отмечается, что береговые радиостанции, особенно СДВ диапазона, со своими громоздкими антенными полями подвержены воздействию со стороны противника. Так, антенное поле радиоцентра Катлер занимает около 6 км2. На нем размещается несколько секций антенн, главным образом ромбических, подвешенных на стальных опорах высотой 250 -300 м. По заявлению американского командования, с началом боевых действий большинство радиоцентров может быть уничтожено. Поэтому оно считает, что для более надежного управления подводными лодками, и в первую очередь ракетными, необходимы системы связи с повышенными живучестью, дальностью распространения и глубиной подводного прохождения сигналов.
Особую надежду в решении данной проблемы они возлагают на созданную еще в 60-е годы резервную систему СДВ связи, размещенную на самолетах-ретрансляторах, которая получила наименование ТАКАМО. Она должна своевременно и с большой надежностью передавать на ПЛАРБ приказ применить ядерное оружие. На самолет системы ТАКАМО сообщение поступает по каналу циркулярных передач для подводных лодок и по специальным линиям связи с высшим командованием вооруженных сил и ВМС США.
Самолеты-ретрансляторы ЕС-130 системы ТАКАМО сведены в две эскадрильи (девять самолетов в каждой), действующие на Атлантическом и Тихоокеанском ТВД. Они специально оборудованы для работы личного состава дежурной смены с аппаратурой приема и ретрансляции сигналов на подводные лодки. Дежурная смена располагается в переднем помещении фюзеляжа самолета, где находятся центральный пост управления, посты операторов, контролирующих прохождение информации по телефонным и телеграфным каналам связи, и пост оператора СДВ передатчика. В хвостовой части фюзеляжа установлены приемные и передающие устройства, усилители мощности, системы обработки информации, выходные каскады сверхдлинноволнового передатчика и аппаратура согласования их с антенной.
Аппаратура связи самолета-ретранслятора включает: четыре УКВ радиостанции AN/ARC-138, две KB радиостанции AN/ARC-132, станцию спутниковой связи AN/ARC-146, а также радиоприемники KB, СВ, ДВ и СДВ диапазонов. Для ретрансляции передач на самолете установлен малогабаритный СДВ передатчик AN/ARQ-127 мощностью 200 кВт, работающий в диапазоне 21-26 кГц. Передачи в адрес подводных лодок ведутся в режимах буквопечатания и ручного телеграфирования. Излучающим элементом является буксируемая антенна длиной 10км, которая выпускается и убирается специальным устройством.
Во время дежурства в воздухе самолет-ретранслятор совершает полет в заданном районе на высоте около 8000 м со скоростью 330-500 км/ч по кругу радиусом 185км с выпущенной СДВ антенной. В таком режиме буксируемая антенна провисает на 1500 м и занимает положение, близкое к вертикальному. По итогам многолетнего использования системы ТАКАМО, как отмечает западная пресса, их передачи принимаются подводными лодками при заглублении антенны до 15 м и удалении от самолета в основном на относительно небольшие расстояния, но возможно и до 10 тыс. км.
По сообщениям зарубежной печати, система ТАКАМО совершенствуется. Улучшается и обновляется радиотехническое вооружение самолета, широко внедряется электронно-вычислительная техника. Промышленности заказаны 15 машин Е-6А, разработанные на базе самолета Боинг 707. Начиная с 1987 года по мере выработки моторесурса EC-130Q будут заменяться новыми самолетами - Е-6А.
Для связи с подводными лодками в любое время и на глубинах, обеспечивающих скрытность их действий, американские специалисты приступают к использованию диапазона ЧНЧ (0-3000 Гц), радиоволны которого обладают незначительным коэффициентом затухания при проникновении в водную среду (до 0,1 дБ/м) и повышенной устойчивостью к излучениям ядерных взрывов. При достаточно мощном передатчике радиоволны ЧНЧ распространяются на расстояние более 10 тыс. км и проникают в воду на глубину до 100 м.
Еще в 60-х годах предпринимались попытки создать такую систему, но из-за ее чрезмерно высокой стоимости и ряда других причин проект был закрыт, а испытательный центр в 1978 году законсервирован.
В 1981 году правительство США утвердило более дешевый проект системы связи на ЧНЧ общей стоимостью 230 млн. долларов (получил наименование ELF - Extremely Low Frequency). В ней предусматривается иметь два передающих центра с передатчиками мощностью 3-5 МВт. Первым является модернизированный испытательный центр в штате Висконсин, в котором уже установлен передатчик повышенной мощности. В 1982-1984 годах из этого центра было проведено несколько экспериментальных передач на погруженные лодки. Сигнал был принят ими на глубине около 100м при скорости хода до 20 уз. Второй центр строится в штате Мичиган. Для упрощения его строительства и эксплуатации антенная система (общей длиной около 100км) подвешена на стальных опорах высотой 1,8 м.
Для связи предполагается использовать частоты 45-80 Гц, на которых передача команды, состоящей из трех букв, длится 5-20 мин. Командование ВМС считает, что данная система будет вспомогательной, ее цель - предупредить лодку о необходимости подвсплыть и принять сообщение по другим средствам связи. К моменту введения в строй системы полностью на всех ПЛАРБ и ПЛА планируется установить приемную аппаратуру. Работой центров будут управлять с одного диспетчерского пункта, хотя они должны обслуживать различные театры. При необходимости для повышения надежности приема особо важной информации оба центра смогут работать синхронно, увеличивая тем самым мощность излучения.
Надежность связи с глубоко погруженными подводными лодками может быть повышена за счет применения лазеров. Эта широко рекламируемая зарубежной печатью система связи позволит передавать на подводные лодки, находящиеся на глубине свыше 100м, большой объем информации с высокой скоростью. Полагают, что она не потребует применения других средств связи, так как лазерная спутниковая связь сможет обеспечить оперативно-тактическое и стратегическое управление силами.
Для обеспечения связи, как свидетельствует иностранная печать, наиболее целесообразным участком светового диапазона является сине-зеленый (0,42-0,53 мкм) спектр, который преодолевает водную среду с наименьшими потерями и проникает на глубину до 300 м. Однако создание лазерной связи сопряжено с рядом технических трудностей. В настоящее время ведутся эксперименты с лазерами, при этом рассматриваются три основных варианта их применения.
Для первого варианта требуются пассивный спутник-ретранслятор, оснащенный крупноразмерным отражающим рефлектором (диаметр до 7м, вес около 0,5т), и мощный наземный лазерный передатчик. Для второго на спутнике необходимо иметь достаточно мощное передающее устройство и на несколько порядков выше по мощности энергетическую установку. В обоих вариантах надежность связи должна обеспечиваться высокоточной системой наведения и сопровождения объекта связи лазерным лучом. Изучается третий вариант, предусматривающий создание лазерного луча с помощью линз и зеркал, концентрирующих солнечную энергию.
Существующий уровень технологии, по мнению зарубежных специалистов, позволяет в первом варианте реализовать лазер мощностью 400"Вт с частотой повторения импульсов до 100Гц, а во втором - разместить на орбите лазер мощностью 10 Вт с частотой повторения импульсов 18 Гц. Экспериментальный образец системы лазерной связи может быть развернут в 90-х годах, а рабочая аппаратура создана не ранее 2000 года.

Подводные лодки независимо от их назначения при выполнении боевой задачи с целью обеспечения скрытности своих действий соблюдают режим радиомолчания. Лишь в исключительных случаях, связанных с аварией, невозможностью выполнения боевой задачи и доклада особо важных сведений, они ведут радиопередачи. Чтобы ПЛАРБ находилась на поверхности или на перископной глубине с работающим радиопередатчиком минимальное время, связь осуществляется посредством высокоскоростной передачи данных в цифровом виде через спутниковую систему связи "Флит-сатком", а также в KB диапазоне. Существующая сеть береговых станций обеспечивает прием таких передач на сменных частотах KB диапазона с высокой надежностью.
В условиях мирного времени при плавании в надводном положении подводные лодки могут использовать весь арсенал своего радиовооружения.
На ПЛАРБ типа "Огайо" установлен комплект радиоаппаратуры, разработанный по проекту "объединенная радиорубка". Он предусматривает оборудование радиорубки автоматизированными системами управления средствами связи и распределения корреспонденции, что позволяет сократить количество операторов в смене до одного - двух человек. Для атомных многоцелевых подводных лодок типа "Лос-Анджелес" разработан унифицированный центр связи, включающий в свой состав корабельную приемопередающую аппаратуру связи, средства радиотехнической разведки, радиопротиводействия, опознавания и системы гидроакустической связи. Средства автоматизации на атомных ракетных и многоцелевых подводных лодках включают ЭВМ AN/UYK-20.
В состав радиоаппаратуры атомных подводных лодок ВМС США входят: один приемник ЧНЧ диапазона (начинают устанавливать); два - СВ, ДВ и СДВ диапазонов (10-3000 кГц); несколько КВ-приемников; приемное устройство AN/SRR-1 циркулярных передач через спутниковую систему связи "Флитсатком"; две радиостанции KB диапазона (мощность передатчика 1 кВт), которые обеспечивают двухстороннюю связь подводных лодок с берегом в режимах телефонии, буквопечатания и ручной телеграфии; два KB передатчика (2-30 МГц, мощность 1 кВт); две УКВ радиостанции (одна из них - AN/WSC-3 - обеспечивает все виды связи с береговыми станциями и подвижными объектами через ИСЗ). Специальное устройство цифровой связи осуществляет высокоскоростную передачу данных.
Основой надежной работы радиоаппаратуры на подводной лодке являются: антенные устройства (рис. 2); буксируемая на глубине более 100м кабельная антенна шлейфного типа длиной свыше 1000 м для приема передач в диапазоне ЧНЧ (начата установка); буксируемая кабельная антенна шлейфного типа (длина 300-900 м) для приема в ДН и СДВ диапазонах. Для нахождения активного участка антенны на глубине приема (не более 20 м) подводная лодка подвсплывает на глубину 30 м, а при ее погружении ниже 60 м антенна на глубине приема поддерживается буем; буксируемая рамочная антенна СДВ диапазона имеет рабочую глубину приема не более 10 м, которая определяется скоростью движения подводной лодки (до 3 уз) и длиной буксира (500-600м); бортовая рамочная антенна СДВ диапазона для приема сигналов на глубине не более 30 м.
Приемные и передающие ненаправленные антенны KB и УКВ диапазонов (спиральные и штыревые), а также спутниковой системы связи устанавливаются на выдвижных устройствах подводной лодки и используются только в надводном положении и на перископной глубине. Антенны спутниковой связи представляют собой направленную решетку с гироскопическим сервоприводом для удержания ее в заданном направлении и с ручным дистанционным управлением для наведения по углу места.
Для связи ПЛА, находящейся в подводном положении, в KB и УКВ диапазонах используется радиобуй AN/BRT-3. Начиная с 1981 года эти буи модернизируются: вместо УКВ антенн на них устанавливают антенны спутниковой связи.
Аварийная связь подводных лодок с самолетами, надводными кораблями и береговыми станциями обеспечивается автоматическим комплексом, ведущим передачи в KB диапазоне с помощью выпускаемого с ПЛ и всплывающего па поверхность связного буя, на котором установлена телескопическая антенна.
Краткий обзор приведенных в статье сведений зарубежной печати по системам и средствам связи указывает на стремление американского командования создать надежную систему управления подводными лодками.

В большинстве случаев хватает простейшего решения: всплыть к самой поверхности воды и поднять антенну над водой. Но этого решения недостаточно для атомной подводной лодки - эти корабли были разработаны во время холодной войны и могли находиться в подводном положении в течение нескольких недель и даже месяцев, но тем не менее они должны были оперативно запустить баллистические ракеты в случае ядерной войны .

Связь с подводными лодками, находящимися в подводном положении, осуществляется следующими способами.

Энциклопедичный YouTube

    1 / 2

    ✪ Устройство подводной лодки

    ✪ Авария на подводной лодке. "Опасный" ритуал для ребенка.

Субтитры

Акустическая передача

Советская система «ЗЕВС» работает на частоте 82 Гц (длина волны 3656 км), американская «Seafarer» (с англ.  -  «мореплаватель») - 76 Гц (длина волны 3944,64 км). Длина волны в этих передатчиках сравнима с радиусом Земли. До 1977 года использовалась система «Sanguine», находящаяся в Висконсине . Частота - 76 Гц или 45 Гц. ВМС Великобритании предпринимали попытки построить свой передатчик в Шотландии , но проект был свёрнут.

Радиоволны инфранизких частот или infra low frequencies (ИНЧ , ILF 300-3000 Гц) имеют более компактные элементы антенн, но меньшее проникновение в толщу морских и земных глубин.

Радиоволны очень низких частот или very low frequencies (ОНЧ , VLF 3-30 кГц) имеют ещё более компактные антенны по сравнению с предыдущим диапазонам, но могут проникать в морскую воду только на глубины до 20 метров, преодолевая поверхностный (скин) эффект . Подводная лодка, находящаяся на небольшой глубине, может использовать этот диапазон для связи. Подводная лодка, находящаяся гораздо глубже, может использовать буй с антенной на длинном кабеле. Буй может находиться на глубине нескольких метров и из-за малых размеров не обнаруживаться сонарами противника. Первый в мире ОНЧ-передатчик, «Голиаф », был построен в Германии в 1943 году, после войны перевезён в СССР, в 1949-1952 годах восстановлен в Нижегородской области и эксплуатируется до сих пор. В Белоруссии, под Вилейкой , функционирует мегаваттный ОНЧ-передатчик для связи с подводными лодками ВМФ России - 43-й узел связи .

Радиоволны низких частот или low frequencies (НЧ , LF 30-300 кГц) также могут использоваться для связи с подземными или морскими объектами. Американский передатчик «Seafarer» работал на частоте 76 кГц и состоял из двух антенн в Клэм Лэйк, Висконсин (с 1977 года) и на базе ВВС «Сойер» в Мичигане (c 1980 года). Был демонтирован в сентябре 2004 года .

Недостатки радиосвязи указанных диапазонов:

  • Линия связи является односторонней. Подводная лодка на борту не может иметь свой передатчик из-за огромного требуемого размера антенны. Даже приёмные антенны КНЧ/СНЧ-связи отнюдь не малы: лодки используют выпускаемые буксируемые антенны длиной от сотен метров.
  • Скорость такого канала крайне мала - порядка нескольких знаков в минуту. Таким образом, разумно предположить, что передаваемые сообщения содержат общие инструкции или команды по использованию других видов связи.

Спутники

Если субмарина находится в надводном положении, то она может использовать обычный диапазон радиосвязи, как и прочие морские суда. Это не означает использование обычного коротковолнового диапазона: чаще всего это связь с военным для использования их в качестве ретрансляторов сигнала и обеспечения связи кораблей из любой точки мира с командованием ВМФ. По проекту было модифицировано три субмарины.

Аналогичное оборудование установлено на воздушном командном пункте - самолёте Ил-80 .

В ВМС США для связи с ПЛ в СДВ диапазоне используется самолёт E-6 Mercury (созданный на базе пассажирского Боинга-707, используются буксируемые антенны длиной 7925 м (основная) и 1219 м (вспомогательная)). Собственно, этот самолёт не является чистым ретранслятором сигналов боевого управления для ПЛАРБ, а служит командным пунктом для управления стратегическими ядерными силами. В состав экипажа, помимо 5 человек, непосредственно управляющих машиной, ещё входит 17 операторов. Правительственный воздушный командный пункт E-4A (на базе Боинга-747) также имеет станцию СДВ и буксируемую трос-антенну длиной около 8 км.

Скрытность

Сеансы связи, особенно со всплытием лодки, нарушают её скрытность, подвергая риску обнаружения и атаки. Поэтому принимаются различные меры, повышающие скрытность лодки, как технического, так и организационного порядка. Так, лодки используют передатчики для передачи коротких импульсов, в которых сжата вся необходимая информация. Также передача может быть осуществлена всплывающим и подвсплывающим буём. Буй может быть оставлен лодкой в определённом месте для передачи данных, которая начинается, когда сама лодка уже покинула район, или нет.

Что за нелепый вопрос? «Как связаться с подводной лодкой»


Взять спутниковый телефон и позвонить. Коммерческие системы спутниковой связи, такие как INMARSAT или «Иридиум», позволяют, не выходя из московского офиса, дозвониться до Антарктиды. Единственный минус – высокая стоимость звонка, впрочем, у Минобороны и Роскосмоса, наверняка, действуют внутренние «корпоративные программы» с солидными скидками…

Действительно, в век Интернета, «Глонасс» и беспроводных систем передачи данных проблема связи с подводными лодками может показаться бессмысленной и не очень остроумной шуткой – какие здесь могут быть проблемы, спустя 120 лет после изобретения радио?

А проблема здесь одна – лодка, в отличие от самолетов и надводных кораблей, движется в глубинах океана и совершенно не реагирует на позывные обычных КВ, УКВ, ДВ-радиостанций - соленая морская вода, являясь превосходным электролитом, надежно глушит любые сигналы.

Ну… если потребуется - лодка может всплыть на перископную глубину, выдвинуть радиоантенну и провести сеанс связи с берегом. Проблема решена?
Увы, не все так просто – современные атомоходы способны месяцами находиться в подводном положении, лишь изредка поднимаясь к поверхности для проведения планового сеанса связи. Основная важность вопроса состоит в надежной передаче информации с берега на подводную лодку: неужели для трансляции важного приказа придется ждать сутки и более – до следующего по графику сеанса связи?

Иными словами, в момент начала ядерной войны подводные ракетоносцы рискуют оказаться бесполезными – в то время, когда на поверхности будут греметь бои, лодки продолжат спокойно выписывать «восьмерки» в глубинах Мирового океана, не подозревая о трагических событиях, происходящий «наверху». А как же наш ответный ядерный удар? Зачем нужны морские ядерные силы, если их невозможно вовремя применить?
Как вообще связаться с притаившейся на морском дне субмариной?

Первый способ довольно логичен и прост, в то же время он весьма сложен в реализации на практике, а дальность действия такой системы оставляет желать лучшего. Речь идет о звукоподводной связи – акустические волны, в отличие от электромагнитных, распространяются в морской среде гораздо лучше, чем по воздуху – скорость звука на глубине 100 метров составляет 1468 м/с!

Остается лишь установить на дне мощные гидрофоны или заряды взрывчатки – серия взрывов с определенным интервалом однозначно покажет подлодкам необходимость всплыть и принять важную шифрограмму по радиосвязи. Способ годится для операций в прибрежной зоне, но «перекричать» Тихий океан уже не получится, в противном случае потребная мощность взрывов превысит все разумные пределы, а образовавшаяся волна-цунами смоет все от Москвы до Нью-Йорка.

Конечно, можно проложить по дну сотни и тысячи километров кабелей – к гидрофонам, установленным в районах наиболее вероятного нахождения стратегических ракетоносцев и многоцелевых атомных подлодок… Но существует ли иное, более надежное и эффективное решение?

Der Goliath. Страх высоты

Обойти законы природы невозможно, но в каждом из правил есть свои исключения. Морская гладь не прозрачна для длинных, средних, коротких и ультракоротких волн. В то же время, сверхдлинные волны, отражаясь от ионосферы, без труда распространяются за горизонтом на тысячи километров и способны проникать в глубины океанов.

Выход найден – система связи на сверхдлинных волнах. И нетривиальная проблема связи с подводными лодками решена!

Но почему все радиолюбители и эксперты в области радиотехники сидят с таким унылым выражением лиц?


Зависимость глубины проникновения радиоволн от их частоты
VLF (very low frequency) - очень низкие частоты
ELF (extremely low frequency) - крайне низкие частоты


Сверхдлинные волны – радиоволны с длиной волны свыше 10 километров. В данном случае, нас интересует диапазон очень низких частот (ОНЧ) в пределах от 3 до 30 кГц, т.н. «мириаметровые волны». Даже не пытайтесь искать этот диапазон на ваших радиоприемниках – для работы со сверхдлинными волнами нужны антенны потрясающих размеров, длиной во многие километры – ни одна из гражданских радиостанций не работает в диапазоне «мириаметровых волн».

Чудовищные габариты антенн – вот главная загвоздка на пути создания ОНЧ-радиостанций.

И все же, исследования в данной области проводились еще в первой половине XX века - их результатом стал невероятный Der Goliath («Голиаф»). Очередной представитель немецкого «вундерваффе» - первая в мире сверхдлинноволновая радиостанция, созданная в интересах Кригсмарине. Сигналы «Голиафа» уверенно принимались подлодками в районе мыса Доброй Надежды, при этом, излучаемые супер-передатчиком радиоволны могли проникать в воду на глубину до 30 метров.


Размеры автомобиля в сравнении с опорой "Голиафа"


Вид «Голиафа» потрясает воображение: передающая ОНЧ-антенна состоит из трех зонтичных частей, смонтированных вокруг трех центральных опор высотой 210 метров, углы антенны закреплены на пятнадцати решетчатых мачтах высотой 170 метров. Каждое антенное полотно, в свою очередь, состоит из шести правильных треугольников со стороной 400 м и представляет из себя систему стальных тросов в подвижной алюминиевой оболочке. Натяжение антенного полотна производится 7-тонными противовесами.

Максимальная мощность передатчика – 1,8 Мегаватт. Рабочий диапазон 15 – 60 кГц, длина волн 5000 - 20 000 м. Скорость передачи данных – до 300 бит/с.

Монтаж грандиозной радиостанции в пригороде г. Кальбе завершился весной 1943 года. Два года «Голиаф» служил в интересах Кригсмарине, координируя действия «волчьих стай» на просторах Атлантики, до тех пор, пока в апреле 1945 «объект» не был захвачен американскими войсками. Спустя некоторое время местность перешла под управление советской администрации – станцию немедленно разобрали и вывезли в СССР.

Шестьдесят лет немцы гадали, где же русские спрятали «Голиаф». Неужели эти варвары пустили шедевр немецкой конструкторской мысли на гвозди?
Тайна открылась в начале XXI века - немецкие газеты вышли с громкими заголовками: «Сенсация! «Голиаф» найден! Станция по-прежнему находится в рабочем состоянии!»

Высоченные мачты «Голиафа» взметнулись ввысь в Кстовском районе Нижегородской области, у поселка Дружный – именно отсюда ведет свое вещание трофейный супер-передатчик. Решение о восстановлении «Голиафа» было принято еще в далеком 1949 году, первый выход в эфир состоялся 27 декабря 1952 года. И вот, уже более 60 лет легендарный «Голиаф» стоит на страже нашего Отечества, обеспечивая связь с идущими под водой подлодками ВМФ, одновременно являясь передатчиком службы точного времени «Бета».

Впечатленные возможностями «Голиафа», советские специалисты не стали останавливаться на достигнутом и развили немецкие идеи. В 1964 году в 7 километрах от города Вилейка (Республика Беларусь) была построена новая, еще более грандиозная радиостанция, более известная, как 43-й узел связи ВМФ.

На сегодняшний день, ОНЧ-радиостанция под Вилейкой, наряду с космодромом Байконур, военно-морской базой в Севастополе, базами на Кавказе и в Средней Азии, входит в число действующих зарубежных военных объектов Российской Федерации. На узле связи «Вилейка» служат порядка 300 офицеров и мичманов ВМФ РФ, не считая вольнонаемных граждан Белоруссии. Юридически, объект не имеет статуса военной базы, а территория радиостанции передана России в безвозмездное пользование до 2020 года.

Главной достопримечательностью 43-го узла связи ВМФ РФ, безусловно, является ОНЧ-радиопередатчик «Антей» (RJH69), созданный по образу и подобию немецкого «Голиафа». Новая станция гораздо крупнее и совершеннее трофейной немецкой аппаратуры: высота центральных опор увеличилась до 305 м, высота боковых решетчатых мачт достигла 270 метров. Помимо передающих антенн, на территории площадью 650 га расположен ряд технических строений, в том числе высокозащищенный подземный бункер.

43-й узел связи ВМФ РФ обеспечивает связь с атомными лодками, несущими боевое дежурство в акваториях Атлантического, Индийского и северной части Тихого океана. Помимо своих основных функций, гигантский антенный комплекс может быть использован в интересах ВВС, РВСН, Космических войск РФ, также «Антей» применяется для ведения радиотехнической разведки и РЭБ и входит в число передатчиков службы точного времени «Бета».

Мощные радиопередатчики «Голиаф» и «Антей» обеспечивают надежную связь на сверхдлинных волнах в Северном полушарии и на большей площади Южного полушария Земли. Но как быть, если районы боевого патрулирования подлодок сместятся в южную Атлантику или в экваториальные широты Тихого океана?

Для особых случаев в составе авиации Военно-Морского Флота имеется специальная техника: самолеты-ретрансляторы Ту-142МР «Орел» (по классификации НАТО Bear-J) - составная часть резервной системы управления морскими ядерными силами.

Созданный в конце 1970-х годов на базе противолодочного самолета Ту-142 (который, в свою очередь, является модификацией стратегического бомбардировщика Т-95), «Орел» отличается от прародителя отсутствием поисковой аппаратуры – взамен на месте первого грузового отсека находится бобина с буксируемой 8600-метровой антенной ОНЧ-радиопередатчика «Фрегат». Помимо сверхдлинноволновой станции, на борту Ту-142МР имеется комплекс аппаратуры связи для работы в обычных диапазонах радиоволн (при этом самолет способен исполнять функции мощного КВ-ретранслятора даже без подъема в воздух).
Известно, что по состоянию на начало 2000-х годов несколько машин данного типа все еще числились в составе 3-ей эскадрильи 568-го гв. смешанного авиаполка авиации Тихоокеанского флота.

Разумеется, использование самолетов-ретрансляторов есть не более чем вынужденная (резервная) полумера – в случае реального конфликта Ту-142МР может быть легко перехвачен вражеской авиацией, кроме того, кружащий в определенном квадрате самолет демаскирует подводный ракетоносец и явственно указывает противнику положение субмарины.

Морякам требовалось исключительно надежное средство для своевременного доведения приказов военно-политического руководства страны до командиров атомных подводных лодок, находящихся на боевом патрулировании в любом уголке Мирового океана. В отличие от сверхдлинных волн, проникающих в толщу воды всего на пару десятков метров, новая система связи должна обеспечить надежный прием экстренных сообщений на глубинах 100 и более метров.

Да…перед связистами возникла весьма и весьма нетривиальная техническая задача.

ЗЕВС

…В начале 1990-х годов ученые Стэнфордского университета (Калифорния) опубликовали ряд интригующих заявлений, касающихся исследований в области радиотехники и радиопередачи. Американцы стали свидетелями необычного явления – научная радиоаппаратура, размещенная на всех континентах Земли регулярно, в одно и то же время, фиксирует странные повторяющиеся сигналы на частоте 82 Гц (или, в более привычном для нас формате 0,000082 МГц). Указанная частота относится к диапазону крайне низких частот (КНЧ), в этом случае длина чудовищной волны составляет 3658,5 км (четверть диаметра Земли).


16-минутная передача "ЗЕВСА", зафиксированная 08.12.2000 г. в 08:40 UTC


Скорость передачи за один сеанс – три знака каждые 5-15 минут. Сигналы поступают прямо из земной коры – у исследователей возникает мистическое ощущение, будто бы сама планета разговаривает с ними.
Мистика – удел средневековых мракобесов, а продвинутые янки сразу догадались, что имеют дело с невероятным КНЧ-передатчиком, размещенным где-то на другом конце Земли. Где? Ясно где – в России. Похоже, эти безумные русские «закоротили» целиком всю планету, используя её в качестве гигантской антенны для передачи зашифрованных сообщений.

Секретный объект «ЗЕВС» расположен в 18 километрах южнее военного аэродрома Североморск-3 (Кольский полуостров). На карте Google Maps хорошо видны две просеки (по диагонали), протянувшиеся через лесотундру на два десятка километров (ряд интернет-источников указывает длину линий в 30 и даже в 60 км), кроме того заметны технические здания, сооружения, подъездные пути и дополнительная 10-километровая просека к западу от двух основных линий.

Просеки с «фидерами» (рыбаки сразу догадаются, о чем идет речь), иногда ошибочно принимают за антенны. На самом деле это два гигантских «электрода» через которые прогоняют электрический разряд мощностью в 30 МВт. Антенной является сама планета Земля.

Выбор данного места для установки системы объясняется низкой удельной проводимостью здешнего грунта – при глубине контактных скважин 2-3 километра, электрические импульсы проникают глубоко в недра Земли, пронизывая планету насквозь. Импульсы гигантского КНЧ-генератора отчетливо фиксируются даже научными станциями в Антарктиде.

Представленная схема не лишена своих недостатков – громоздкие размеры и чрезвычайно низкий КПД. Несмотря на колоссальную мощность передатчика, мощность выходного сигнала составляет считанные Ватты. Кроме того, прием столь длинных волн также влечет за собой немалые технические сложности.

Прием сигналов «Зевса» осуществляется подлодками на ходу на глубине до 200 метров на буксируемую антенну длиной около одного километра. Ввиду чрезвычайно низкой скорости передачи данных (один байт за несколько минут), система «ЗЕВС» очевидно используется для передачи простейших закодированных сообщений, к примеру: «Подняться к поверхности (выпустить радиобуй) и прослушать сообщение по спутниковой связи».

Ради справедливости стоит отметить, что впервые подобная схема впервые была задумана в США в годы Холодной войны – в 1968 годы был предложен проект секретного объекта ВМС под кодовым именем Sanguine («Оптимистичный») – янки намеревались превратить 40% площади лесов штата Висконсин в гигантский передатчик, состоящий из 6000 миль проложенных под землей кабелей и 100 высокозащищенных бункеров для размещения вспомогательной аппаратуры и генераторов электроэнергии. По задумке создателей, система была способна выдержать ядерный взрыв и обеспечить уверенную трансляцию сигнала о ракетном нападении на все атомные подлодки ВМС США в любом районе Мирового океана.


Американский КНЧ-передатчик (Клэм Лэйк, Висконсин, 1982 год)


В 1977-1984 годах проект был реализован в менее абсурдной форме в виде системы Seafarer («Мореплаватель»), чьи антенны располагались в местечке Клэм Лэйк (шт. Висконсин) и на базе ВВС США «Сойер» (шт. Мичиган). Рабочая частота американской КНЧ-установки – 76 Гц (длина волны 3947,4 км). Мощность передатчика Seafarer – 3 МВт. Система была снята с боевого дежурства в 2004 году.

В настоящее время перспективным направлением для решения проблемы связи с подводными лодками является применение лазеров сине-зеленого спектра (0,42-0,53 мкм), чье излучение с наименьшими потерями преодолевает водную среду и проникает на глубину до 300 метров. Помимо очевидный трудностей с точным позиционированием луча, «камнем преткновения» данной схемы является высокая потребная мощность излучателя. Первый вариант предусматривает использование спутников-ретрансляторов с крупноразмерными отражающими рефлеткторами. Вариант без ретранслятора предусматривает наличие на орбите мощного источника энергии – для питания лазера мощностью 10 Вт потребуется энергоустановка с мощностью выше на два порядка.

http://www.vlf.it/zevs/zevs.htm
http://commi.narod.ru
http://tesla.stumblers.net
http://www.radioscanner.ru
http://aobauer.home.xs4all.nl/Goliath.pdf

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...