Первый по металлочерепице. Устройство крыши

Презентация по экологии на тему "охрана и рациональное использование природных ресурсов" Виды природных ресурсов

Иван калита как историческая личность

Библиотека инженера-гидроакустика

Советы начинающим художникам

Востребованное гадание «Три карты

Ивт кем работать. Будущая профессия. Специальность "прикладная информатика в экономике"

Погружение слова. Horus feat. Oxxxymiron - Погружение (текст песни, слова). Синдром очагового затемнения

Как приготовить ленивые голубцы

Яблочные маффины с корицей Как приготовить маффины с яблоками и корицей

й способ, как сварить ячневую кашу рассыпчатой и вкусной

Сколько калорий в морской капусте

Как вы понимаете значение слова подвиг

Воинская профессия. Артиллерист это кто. Воинская профессия Парадная форма артиллерии

Ассимиляция проблемного опыта

Почему назначают Курантил во время беременности?

Тема урока учение пророка исы мир ему. Урок на тему "пророк мухаммед"

Цель сегодняшней публикации – представить неподготовленному читателю исчерпывающие сведения о том, что такое водород , каковы его физические и химические свойства, сфера применения, значение и способы получения.

Водород присутствует в подавляющем большинстве органических веществ и клеток, в которых на его долю приходится почти две трети атомов.

Фото 1. Водород считается одним из самых распространенных элементов в природе

В периодической системе элементов Менделеева водород занимает почетную первую позицию с атомным весом, равным единице.

Название «водород» (в латинском варианте – Hydrogenium ) ведет происхождение от двух древнегреческих слов: ὕδωρ - « » и γεννάω - «рождаю» (буквально – «рождающий ) и впервые было предложено в 1824 г. русским химиком Михаилом Соловьевым.

Водород является одним из водообразующих (наряду с кислородом) элементов (химическая формула воды H 2 O).

По физическим свойствам водород характеризуется как бесцветный газ (легче воздуха). При смешении с кислородом или воздухом крайне и горюч.

Способен растворяться в некоторых металлах (титане, железе, платине, палладии, никеле) и в этаноле, однако очень плохо растворим в серебре.

Молекула водорода состоит из двух атомов и обозначается H 2 . Водород имеет несколько изотопов: протий (H), дейтерий (D) и тритий (T).

История открытия водорода

Еще в первой половине XVI века при проведении алхимических опытов, смешивая металлы с кислотами, Парацельс заметил доселе неизвестный горючий газ, который отделить от воздуха он так и не смог.

Спустя почти полтора столетия – в конце XVII века – французскому ученому Лемери удалось-таки отделить водород (еще не зная, что это именно водород) от воздуха и доказать его горючесть.

Фото 2. Генри Кавендиш — первооткрыватель водорода

Химические опыты в середине XVIII века позволили Михаилу Ломоносову выявить процесс выделения некоего газа в результате некоторых химических реакций, не являющегося, однако, флогистоном.

Настоящий прорыв в исследовании горючего газа удалось совершить английскому химику Генри Кавендишу , которому и приписывается открытие водорода (1766).

Этот газ Кавендиш называл «горючим воздухом». Им же проведена реакция сжигания этого вещества, в результате которой получалась вода.

В 1783 г. французским химикам во главе с Антуаном Лавуазье был осуществлен синтез воды, а впоследствии – разложение воды с выделением «горючего воздуха».

Эти исследования окончательно доказали присутствие водорода в составе воды. Именно Лавуазье предложил именовать новый газ Hydrogenium (1801).

Полезные свойства водорода

Водород легче воздуха в четырнадцать с половиной раз.

Его же отличает и самая высокая теплопроводность среди прочих газов (белее чем в семь раз превышает теплопроводность воздуха).

В былые воздушные шары и дирижабли заполняли водородом. После серии катастроф в середине 1930-х, закончившихся взрывами дирижаблей, конструкторам пришлось искать водороду замену.

Теперь для подобных летательных аппаратов используется гелий, который намного дороже водорода, зато не так взрывоопасен.

Фото 3. Водород применяется для изготовления ракетного топлива

Во многих странах ведутся исследования по созданию экономичных двигателей для легковых и грузовых автомобилей на основе водорода.

Автомобили на водородном топливе значительно экологичнее своих бензиновых и дизельных собратьев.

При обычных условиях (комнатная температура и естественное давление) водород неохотно вступает в реакции.

При нагревании смеси водорода и кислорода до 600 °C начинается реакция, завершающаяся образованием молекул воды.

Эту же реакцию можно спровоцировать с помощью электрической искры.

Реакции при участи водорода завершаются, лишь когда участвующие в реакции компоненты будут израсходованы целиком.

Температура горящего водорода достигает 2500-2800 °C.

С помощью водорода производят очистку различных типов топлива на основе нефти и нефтепродуктов.

В живой природе водород заменить нечем, так как он присутствует в любой органике (включая нефть) и во всех белковых соединениях.

Без участия водорода была бы невозможна.

Агрегатные состояния водорода

Водород способен пребывать в трех основных агрегатных состояниях:

  • газообразном;
  • жидком;
  • твердом.

Обычное состояние водорода – газ. Понижая его температуру до -252,8 °C, водород превращается в жидкость, а после температурного порога -262 °C водород становится твердым.

Фото 4. Уже несколько десятилетий вместо дешевого водорода для наполнения воздушных шаров используют дорогой гелий

Ученые предполагают, что водород способен находиться в дополнительном (четвертом) агрегатном состоянии – металлическом.

Для этого нужно всего лишь создать давление в два с половиной миллиона атмосфер.

Пока, увы, это всего лишь научная гипотеза, так как получить «металлический водород» еще никому не удавалось.

Жидкий водород – из-за своей температуры — при попадании на кожу человека способен вызвать сильное обморожение.

Водород в таблице Менделеева

В основе распределения химических элементов в периодической таблице Менделеева лежит их атомный вес, рассчитанный относительно атомного веса водорода.

Фото 5. В таблице Менделеева водороду отведена ячейка с порядковым номером 1

Такого подхода долгие годы никто не мог ни опровергнуть, ни подтвердить.

С возникновением в начале XX века и, в частности, появлением знаменитых постулатов Нильса Бора, объясняющих с позиций квантовой механики строение атома, удалось доказать справедливость гипотезы Менделеева.

Верно и обратное: именно соответствие постулатов Нильса Бора периодическому закону, лежащему в основе таблицы Менделеева, и стало самым веским доводом в пользу признания их истинности.

Участие водорода в термоядерной реакции

Изотопы водорода дейтерий и тритий являются источниками невероятно мощной энергии, высвобождающейся в процессе термоядерной реакции.

Фото 6. Термоядерный взрыв без водорода был бы невозможен

Такая реакция возможна при температуре не ниже 1060 °C и протекают очень быстро – в течение нескольких секунд.

На Солнце термоядерные реакции протекают медленно.

Задача ученых – понять, почему так происходит, чтобы использовать полученные знания для создания новых – практически неисчерпаемых – источников энергии.

Что такое водород (видео):

>

Имеет форму шара, а представляли себе ее в виде диска и даже плавающего прямоугольника, огонь, воздух, землю и воду считали четырьмя основными элементами мироздания . Кто перестал называть воду элементом? Кто лишил ее этого высокого звания? ? Целый ряд смелых химиков, работавших независимо друг от друга, почти одновременно сделали это открытие.

Первооткрыватели кислорода и водорода

С тех пор как химики оттеснили алхимиков и чернокнижников от реторт, семья элементов сразу увеличилась. Если сто лет тому назад она насчитывала только 60 членов, то теперь, считая искусственно полученные элементы, их стало сто. Их названия, химический знак, атомный вес и порядковый номер мы найдем в любой химической таблице. Только имена «предков» исчезли из нее. Первооткрывателями кислорода и водорода считаются:
  1. Французский химик Антуан Лоран Лавуазье . Он был управляющим селитровым и пороховым заводом, а позднее, после победы французской буржуазной революции, комиссаром национальной казны, одним из влиятельнейших людей Франции.
  2. Английский химик Генри Кавендиш , родом из старой герцогской семьи, пожертвовавший значительную долю своего состояния науке.
  3. Соотечественник Кавендиша, Джозеф Пристли . Он был священником. Как ярый сторонник французской революции, Пристли был изгнан из Англии и бежал в Америку.
  4. Известный шведский химик Карл Вильгельм Шееле, фармацевт.
Это их имена. А что они сделали?

Кислород - в воде и воздухе

Лавуазье, Пристли и Шееле произвели ряд опытов. Сначала они открыли кислород в воде и воздухе . Сокращенно в химии он обозначается буквой «О». Когда мы говорили:
Без воды нет жизни,
этим еще не было сказано, кому, собственно, вода обязана своей живительной силой. Теперь мы можем ответить на этот вопрос. Живительная сила воды заключается в кислороде . Кислород важнейший элемент воздушной оболочки, окружающей Землю. Без кислорода гаснет жизнь, как пламя свечи, поставленной под стеклянную банку. Даже самый большой пожар утихает, если горящие предметы забросать песком, прекратив к ним доступ кислорода.
Теперь вы понимаете, почему огонь в печке так плохо горит, если вьюшка закрыта? Такой же процесс сгорания происходит и в нашем организме при обмене веществ. Паровая машина работает за счет использования тепловой энергии горящего угля. Точно так же наш организм использует энергию тех питательных веществ, которые мы потребляем. Воздух, который мы вдыхаем, необходим для того, чтобы «печка» - наш организм - хорошо горела, - ведь наше тело должно иметь определенную температуру. При выдохе мы выделяем воду в виде пара и продукты сгорания.
Лавуазье изучал эти процессы и обнаружил, что горение - это быстрое соединение различных веществ с кислородом воздуха . При этом возникает теплота. Но Лавуазье не удовлетворился тем, что открыл кислород . Он хотел знать, с какими веществами соединяется кислород.

Открытие водорода

Почти одновременно с Кавендишем, который тоже разложил воду на составные части, Лавуазье открыл водород . Этот элемент получил название «Hydrogenium», что значит: Водород обозначается буквой «Н». Исследуем еще раз, действительно ли водород находится в составе воды . Наполним пробирку льдом и нагреем ее над пламенем спиртовки. (Спирт, как и всякий алкоголь, богат водородом.) И что же мы увидим? Наружная сторона пробирки покроется как бы росою. Или подержим чистый нож над пламенем свечи. Нож тоже покроется каплями воды. Откуда же берется вода? Вода возникает из пламени. Значит, огонь - источник воды! Это не новое открытие, и все же оно поражает. Химики сказали бы так: при сгорании водорода, иначе говоря, при соединении водорода с кислородом образуется водяной пар . Потому-то пробирка и нож покрываются каплями воды. Так произошло открытие состава воды . Итак, водород, который в 16 раз легче кислорода и в 14 раз легче воздуха, горит! При этом он образует большое количество тепла. Прежде воздушные шары наполняли водородом. Это было очень опасно. Теперь вместо водорода применяют гелий. Можно ответить и на второй вопрос:
Почему вода не горит?
Этот вопрос кажется настолько простым, что мы его сначала даже и не задавали. Большинство скажет:
Вода мокрая, поэтому она и не горит.
Неверно. Бензин тоже «мокрый», но лучше не пробуйте узнать, горит ли он! Вода не горит потому, что она сама образовалась в результате горения. Это, можно сказать, «жидкая зола» водорода. Вот почему вода тушит огонь не хуже, чем песок.

Ответ от Невролог [гуру]
Газ водород был обнаружен Т. Парацельсом в XVI в. , когда он погрузил железо в серную кислоту. Но тогда еще и такого понятия не было – газ.
Одна из самых важных заслуг химика XVII в.
Я. Б. ван Гельмонта перед наукой состоит в том, что именно он обогатил человеческий словарь новым словом – «газ» , назвав так невидимые вещества, «которые не могут быть ни сохранены в сосудах, ни превращены в видимое тело» .
Но вскоре физик Р. Бойль придумал способ собирать и сохранять газы в сосудах. Это очень важный шаг вперед в познании газов, и опыт Бойля заслуживает подробного описания. Он опрокинул бутыль, наполненную разбавленной серной кислотой и железными гвоздями, горлышком в чашку с серной кислотой.
Но здесь Бойль допустил серьезную ошибку. Вместо того чтобы исследовать природу полученного газа, он отождествил этот газ с воздухом.
Удивительные свойства газа, впервые собранного Бойлем и столь недопустимо спутанного с воздухом, открыл Н. Лемери, современник Бойля. «Горючий воздух» – отныне это название надолго закрепится за удивительным газом, выделяемым железом из серной кислоты. Надолго, но не навсегда, т. к. это название неправильное, вернее, неточное: горючи и некоторые другие газы. Но если еще долго газ «серной кислоты и железа» исследователи будут путать с другими горючими газами, то никто уже не спутает его, подобно Бойлю, с обыкновенным воздухом.
Нашелся человек, который взялся за раскрытие тайны происхождения этого газаЗнатность происхождения обеспечивала ему блестящую карьеру государственного деятеля, а случайно доставшееся богатство открывало все возможности для беспечной жизни. Но лорд Г. Кавендиш пренебрег и тем и другим ради того удовлетворения, которое доставляет проникновение в тайны природы.
Первая опубликованная в 1766 г. работа Кавендиша посвящена «горючему воздуху» . Прежде всего он увеличивает количество способов получения «горючего воздуха» . Оказывается, что этот газ получается с одинаковым успехом, если железо заменить цинком или оловом, а серную кислоту соляной. «Горючий воздух» , однако, не поддерживает горения, точно так же, как и дыхание животных, которые быстро погибают в его атмосфере
Десять лет спустя после опубликования работы Кавендиша, в 1766 г. , исследователь по фамилии Маке, сжигая «горючий воздух» , сделал интересное наблюдение
Он к своему удивлению, обнаружил, что это пламя не оставляет никакой копоти.
При этом он заметил и нечто другое: блюдечко покрылось капельками жидкости, бесцветной, как вода. Полученную жидкость он и его помощник тщательно исследовали и нашли, что это действительно чистая вода.
А. Лавуазье усомнился в том, что при горении «горючего воздуха» получалась вода знаменательный опыт проводился 24 июня 1783 г. в присутствии нескольких лиц. Результат не вызвал никаких сомнений.
Итак, – заключил Лавуазье, – вода представляет собой не что иное, как окисленный “горючий воздух” или, иначе говоря, непосредственный продукт сгорания “горючего воздуха” – в кислороде, лишенный света и тепла, выделяющихся при сгорании» .
Медлительный Кавендиш обнародовал свой отчет в Лондонском королевском обществе лишь в 1784 г. , тогда как Лавуазье изложил свои результаты перед Парижской академией наук 25 июня 1783 г. , на целый год опередив своего соперника. В открытии сложного состава воды участвовали кроме Лавуазье и другие лица, в том числе знаменитый английский изобретатель Джеймс Уатт, которому за рубежом неправильно приписывается честь изобретения паровой машины.
Таким образом, теоретические соображения блестяще подтвердились, а попутно открылся новый способ получения «горючего воздуха».

ВОДА. ВОДОРОД

Окончание. Начало см. в № 25–26/2004

История открытия водорода

В течение многих веков от внимания людей ускользало существование газов, этих веществ-невидимок. Лишь постепенно и с трудом укреплялось убеждение, что газы столь же материальны, как и все то, что доступно зрению и осязанию, и что без познания газов, без учета их участия в различных явлениях невозможно понять химическую жизнь мира.
Газ водород был обнаружен Т.Парацельсом в XVI в., когда он погрузил железо в серную кислоту. Но тогда еще и такого понятия не было – газ.
Одна из самых важных заслуг химика XVII в.
Я.Б. ван Гельмонта перед наукой состоит в том, что именно он обогатил человеческий словарь новым словом – «газ», назвав так невидимые вещества, «которые не могут быть ни сохранены в сосудах, ни превращены в видимое тело».
Но вскоре физик Р.Бойль придумал способ собирать и сохранять газы в сосудах. Это очень важный шаг вперед в познании газов, и опыт Бойля заслуживает подробного описания. Он опрокинул бутыль, наполненную разбавленной серной кислотой и железными гвоздями, горлышком в чашку с серной кислотой.
Вот так описал Бойль свое наблюдение: «Тотчас я увидел поднимающиеся воздушные пузырьки, которые, соединяясь, понижали уровень воды, занимая ее место. Скоро вся вода была вытеснена из верхнего сосуда и заменена телом, которое совсем имело вид воздуха». Но здесь Бойль допустил серьезную ошибку. Вместо того чтобы исследовать природу полученного газа, он отождествил этот газ с воздухом.
Впрочем, исправление ошибки Бойля не заставило себя долго ждать. Удивительные свойства газа, впервые собранного Бойлем и столь недопустимо спутанного с воздухом, открыл Н.Лемери, современник Бойля. Вот как описал он свой превосходный опыт: «Когда помещают в колбу средней величины три унции* купоросного масла (серная кислота) с 12 унциями воды и подбрасывают унцию железных опилок, начинается кипение и растворение железа, которое производят бесцветные пары, поднимающиеся к верхней части сосуда. При поднесении к горлышку сосуда зажженной лучинки пар моментально охватывается пламенем и раздается бурный взрыв. Затем пламя гаснет. Если же продолжать подбрасывать железные стружки, сосуд все время будет наполнен пламенем, которое будет проникать и циркулировать до дна сосуда и гореть, как факел, над его горлышком».
«Мне кажется, – восклицает пораженный Лемери, – что эти вспышки представляют в миниатюре горючую материю, которая течет и воспламеняется в облаках, производя громы и молнии».
«Горючий воздух» – отныне это название надолго закрепится за удивительным газом, выделяемым железом из серной кислоты. Надолго, но не навсегда, т. к. это название неправильное, вернее, неточное: горючи и некоторые другие газы. Но если еще долго газ «серной кислоты и железа» исследователи будут путать с другими горючими газами, то никто уже не спутает его, подобно Бойлю, с обыкновенным воздухом.

Г.Кавендиш
(1731–1810)

Нашелся человек, который взялся за раскрытие тайны происхождения этого газа. Он не принадлежал к числу химиков-профессионалов, как не были ими многие исследователи его времени, прославившие себя тем не менее великими химическими открытиями. Знатность происхождения обеспечивала ему блестящую карьеру государственного деятеля, а случайно доставшееся богатство открывало все возможности для беспечной жизни. Но лорд Г.Кавендиш пренебрег и тем и другим ради того удовлетворения, которое доставляет проникновение в тайны природы. До нас не дошло даже портрета этого ученого-отшельника, если не считать портретом поневоле приводимую всюду не очень искусную карикатуру. Зато сохранились воспоминания его современников, которые прекрасно заменяют самый искусный портрет, по крайней мере с точки зрения психологической характеристики этой замечательной личности. Вот один из этих рассказов: «Однажды Кавендишу был представлен некий австрийский дворянин, который, по обычаю учтивых людей, начал уверять, что главной причиной его приезда в Лондон была именно надежда познакомиться с одним из величайших украшений его века – величайшим современным естествоиспытателем. Кавендиш не ответил на эту напыщенную речь ни слова, он стоял с опущенными глазами, растерянный и смущенный. Вдруг он замечает просвет в окружающем кольце людей и со всей стремительностью, на которую только был способен, бросается бежать и не успокаивается до тех пор, пока не чувствует себя в безопасности в своей карете, в которой и отправляется домой».
И этот человек, возбуждавший в обществе лишь недоумение, смех и обидное сожаление, в своей лаборатории совершенно преображался: он проявлял необычайное остроумие и находчивость в постановке опытов, терпение и выдержку в достижении поставленных целей – словом, все те качества, которых ему так недоставало в общении с людьми.
Скромность Кавендиша была настолько велика, что из достоинства сделалась недостатком. Он с большими и длительными колебаниями решался на опубликование своих образцовых работ, и некоторые из них так и не увидели света до самой его смерти.
Первая опубликованная в 1766 г. работа Кавендиша посвящена «горючему воздуху». Прежде всего он увеличивает количество способов получения «горючего воздуха». Оказывается, что этот газ получается с одинаковым успехом, если железо заменить цинком или оловом, а серную кислоту соляной. «Горючий воздух», однако, не поддерживает горения, точно так же, как и дыхание животных, которые быстро погибают в его атмосфере. Что говорить относительно взрывчатости «горючего воздуха»? Это свойство проявляется лишь тогда, когда его предварительно смешивают с воздухом.
Уже одних этих чисто качественных наблюдений было бы достаточно, чтобы признать – «горючий воздух» не имеет ничего общего с обыкновенным воздухом, кроме одинакового внешнего вида, или, вернее, кроме отсутствия у того и другого какого-либо «вида» вообще. Но лозунг нашего исследователя гласил: «Все определяется мерой, числом и весом». Следуя этому лозунгу, Кавендиш определил, какой объем «горючего воздуха» выделяется при растворении в кислоте одного и того же количества разных металлов, при какой пропорции смешения «горючего воздуха» с обыкновенным получается взрыв наибольшей силы и, наконец, каков удельный вес «горючего воздуха». Эту последнюю задачу он выполнил при помощи опыта настолько остроумного по своему замыслу, что его невозможно обойти молчанием.

Кавендиш тщательно взвесил колбу с кислотой и цинком до начала взаимодействия между этими веществами, а затем – после полного растворения цинка. Получилась некоторая убыль в весе, которая, по мнению Кавендиша, как раз соответствовала весу улетучившегося «горючего воздуха». С другой стороны, Кавендишу из опытов было известно, какой объем «горючего воздуха» должен выделиться при полном растворении кусочка цинка данного веса. Деля убыль веса колбы на этот объем, он и получил искомое – удельный вес «горючего воздуха», который оказался необычайно малым. «Горючий газ» исключительно легок, он гораздо легче атмосферного воздуха. Это новая, чрезвычайно важная особенность «горючего воздуха», которая вскоре в руках людей, стоявших ближе к практике, получила замечательное применение.
Так же трудолюбиво и последовательно изучил Кавендиш другие свойства «горючего воздуха», вплоть до измерения силы звука при взрыве его смеси с воздухом. Создается впечатление, что этот неутомимый исследователь не хотел ничего оставить другим. Тем не менее самые трудные вопросы, связанные с «горючим воздухом», оставались невыясненными. Откуда берется «горючий воздух» – из металла или кислоты? Куда он девается или, лучше сказать, во что превращается при горении и взрыве?
Н аконец пробил час решения и этих загадок.
Десять лет спустя после опубликования работы Кавендиша, в 1766 г., исследователь по фамилии Маке, сжигая «горючий воздух», сделал интересное наблюдение. Он ввел фарфоровое блюдечко в «горючий воздух», спокойно горевший в горлышке бутыли, и, к своему удивлению, обнаружил, что это пламя не оставляет на блюдечке никакой копоти. При этом он заметил и нечто другое: блюдечко покрылось капельками жидкости, бесцветной, как вода. Полученную жидкость он и его помощник тщательно исследовали и нашли, что это действительно чистая вода.
Пламя без дыма и копоти было слишком удивительным явлением, чтобы не вызвать споров. А.Лавуазье усомнился в том, что при горении «горючего воздуха» получалась вода. Для разрешения своих сомнений он заготовил два больших сосуда, из которых один должен был предоставлять «горючий воздух», а другой – кислород. Оба газа направлялись при помощи трубок с кранами в стеклянный колпак, где и должны были сгореть. Этот знаменательный опыт проводился 24 июня 1783 г. в присутствии нескольких лиц. Результат не вызвал никаких сомнений.
«Полученная вода, послушная всем поверочным испытаниям, какие только можно было придумать,– как рассказывал Лавуазье, – оказалась чистой, подобно дистиллированной; она не красила вытяжки из подсолнечника, ни одним из известных реактивов нельзя было обнаружить в ней даже следов какой-либо примеси... Итак, – заключил Лавуазье, – вода представляет собой не что иное, как окисленный “горючий воздух” или, иначе говоря, непосредственный продукт сгорания “горючего воздуха” – в кислороде, лишенный света и тепла, выделяющихся при сгорании».
При проведении описанного опыта в числе других присутствовал случайно находившийся в Париже секретарь Лондонского королевского общества. Он сообщил, что по ту сторону Ла-Манша еще в 1782 г. сожгли «горючий воздух» в замкнутом пространстве и установили, что при этом действительно получается чистая вода. Кто же опередил замечательного французского химика? Не кто иной, как Кавендиш, который спустя почти двадцать лет возвратился к своей старой теме. Его метод отличался от метода Лавуазье только тем, что он не сжигал водород, а взрывал электрической искрой смесь его с 2,5-кратным объемом воздуха. Взорвав таким образом 500 тыс. гран (1 гран – около 0,06 г) «горючего воздуха», он сумел собрать до 135 гран воды, которая не имела ни вкуса, ни запаха и при испарении досуха не оставляла ни малейшего заметного осадка.
Заметим, что водород вообще легко воспламеняется. Если в воздухе массовая доля водорода составляет 18–68%, то может произойти взрыв. Это было причиной ряда тяжелых аварий. Так, например, в 1937 г. взорвался и сгорел самый большой в мире дирижабль «Гинденбург».
Медлительный Кавендиш обнародовал свой отчет в Лондонском королевском обществе лишь в 1784 г., тогда как Лавуазье изложил свои результаты перед Парижской академией наук 25 июня 1783 г., на целый год опередив своего соперника. В открытии сложного состава воды участвовали кроме Лавуазье и другие лица, в том числе знаменитый английский изобретатель Джеймс Уатт, которому за рубежом неправильно приписывается честь изобретения паровой машины. Но Лавуазье яснее всех выразил великую истину: отныне вода не должна считаться простым веществом, ибо доказано, что она образована соединением «горючего воздуха» с «жизненным воздухом».
Лавуазье, однако, не счел вопрос решенным. Получив воду синтезом, т.е. соединением образующих ее элементов, он захотел осуществить обратное – анализ, т.е. разложение воды на элементы.
Раскаленное в кузнечном горне железо на воздухе окисляется, т. е. присоединяет кислород. Не в состоянии ли оно отнять кислород от воды? Опыт оправдал эту надежду. При пропускании водяного пара над раскаленными железными стружками, помещенными в ружейном стволе, кислород действительно соединяется с железом, и «горючий воздух» освобождается.
Таким образом, теоретические соображения блестяще подтвердились, а попутно открылся новый способ получения «горючего воздуха». Но и на этом дело не кончилось. «Нельзя ли, – спрашивал себя Лавуазье, – получить теперь обратно воду, пропуская “горючий воздух” над раскаленной окисью железа, т.е. заставляя его, в свою очередь, отнимать кислород от окиси железа, вместо того чтобы соединяться со свободным кислородом?» И опять его ожидания увенчались полным успехом: он вновь получил воду и металлическое железо в виде тончайшего порошка.
Теперь известно, что масса атома водорода меньше массы дробинки во столько раз, во сколько раз масса человека меньше массы земного шара. И если 100 млн атомов водорода расположить рядом друг с другом, то они образуют цепочку длиной всего лишь в 1 см.
Доказательством сложного состава воды завершился круг великих химических открытий, сделанных в XVIII в.
В результате горизонты химической науки настолько расширились и прояснились, что появилась необходимость заменить старинные, случайные и несогласованные одни с другими названия различных веществ новыми, которые указывали бы на взаимные отношения этих веществ, на их химическое родство.

*Унция – неметрическая единица массы в англоязычных странах, около 0,03 г. (Примеч. ред. )

После работ Дж. Блэка многие химики в различных лабораториях Англии, Швеции, Франции, Германии занялись изучением газов. Больших успехов достиг Г. Кавендиш. Все экспериментальные работы этого скрупулезного ученого были основаны на количественном методе исследования. Он широко использовал взвешивание веществ и измерение газовых объемов, руководствуясь законом сохранения массы. В первой работе Г. Кавенднша по химии газов (1766) описаны способы получения и свойства .

«Горючий воздух» был известен и раньше (Р. Бойль, Н. Лемери). В 1745 г. М. В. Ломоносов, например, отмечал, что «при растворении какого-либо неблагородного металла, особенно , в кислотных спиртах из отверстия склянки вырывается горючий пар, который представляет собой не что иное, как флогистон». Это примечательно в двух отношениях: во-первых, за много лет до Кавендиша М. В. Ломоносов пришел к выводу, что «горючий воздух» (т. е. водород) представляет собой флогистон; во-вторых, из приведенной цитаты следует, что М. В. Ломоносов принимал учение о флогистоне.

Но выделить «горючий воздух» и изучить его свойства никто до Г. Кавендиша не пытался. В химическом трактате «Три работы, содержащие опыты с искусственными видами воздуха» (1766) он показал, что существуют газы, которые отличаются от воздуха, а именно, с одной стороны, «лесной, или связанный, воздух», который, как установил Г. Кавендиш, оказался в 1,57 раза тяжелее обычного воздуха, с другой стороны, «горючий воздух» - водород. Г. Кавендиш получал его действием разбавленных и кислот на различные металлы. Тот факт, что при действии на (цинк, железо) выделялся один и тот же газ (водород), окончательно убедил Г. Кавендиша в том, что все металлы содержат флогистон, который выделяется при превращении металлов в «земли». Английский ученый принимал водород за чистый флогистон, поскольку газ горит, не оставляя остатка, и оксиды металлов, обрабатываемые этим газом, при нагревании восстанавливаются в соответствующие металлы.

Генри Кавендиш

Г. Кавендиш как сторонник теории флогистона считал, что не вытесняется металлом из кислоты, а выделяется вследствие разложения «сложного» металла. Реакцию получения «горючего воздуха» из металлов он представлял так:

Какими способами и приборами пользовался «отец химии газообразных веществ», можно видеть из следующего. Покидая Лидс, Дж. Пристли по просьбе одного из знакомых оставил ему глиняное корыто, которое он применял как пневматическую ванну в своих опытах по изучению состава воздуха и которое, иронически замечает Дж. Пристли, «ничем не отличалось от корыт, в которых прачки стирают белье». В 1772 г. Дж. Пристли заменил в пневматической ванне воду ртутью, что позволило ему впервые получить в чистом виде и изучить растворимые в воде газы: «солянокислый воздух» () и «летучий щелочной воздух» - бесцветный газ с удушливым резким запахом. Это был , который он получил при нагревании хлорида аммония:

2NH 4 Cl + CaO = 2NH 3 + CaCl 2 + H 2

«Золотая россыпь, открытая Пристли, была… ртутная ванна,- писал В. Оствальд. - Один шаг вперед в технической стороне дела-замена воды - вот ключ к большинству открытий Пристли». Дж. Пристли наблюдал, что если через аммиак пропускать электрическую искру, то объем его резко увеличивается. В 1785 г. К.- Л. Бертолле установил, что это объясняется разложением аммиака на азот и водород. Дж. Пристли наблюдал, что при взаимодействии двух резко пахнущих, газов (НСl и NH 3) образуется белый порошок без запаха, (NH 4 Cl). В 1775 г. Дж. Пристли получил , а в. 1796 г. - , который принял за чистый флогистон.

Вам также будет интересно:

Презентация:
Обязательный минимум знаний при подготовке к ОГЭ по химии Периодическая система Д.И....
Мыть полы во. К чему снится мыть полы. Полный сонник Новой Эры
Обыденные дела, вроде влажной уборки, часто являются частью снов, и нередко на такие...
Представляем мясо по-новому: учимся готовить ромштекс из говядины Как вкусно приготовить ромштекс из говядины
Классический ромштекс – это кусок, вырезанный из толстого или тонкого края, филея или верха...
Лазанья с говядиной и тортильями
Лазанья с говядиной – это очень вкусное блюдо, которое часто сравнивают с мясной...
Чечевица с рисом: рецепты и особенности приготовления
Что такое чечевица? Чечевица - это однолетнее культурное растение, которое принадлежит к...